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This site contains different lecture note templates.
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Stock and Watson Applications
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1 Empirical Applications of Linear & Nonlinear
Regressions

This chapter introduces the basics in linear and nonlinear regression models and shows how
to perform regression analysis in R.

The following packages are needed for reproducing the code presented in this chapter:

• AER - accompanies the Book Applied Econometrics with R by C. Kleiber and Zeileis
(2008) and provides useful functions and data sets.

• MASS - a collection of functions for applied statistics.

• stargazer - used for creating well-formatted regression and summary statistics tables
(Hlavac 2022)

library(AER)
library(MASS)
library(stargazer)

1.1 Data Set Description

The California School data set (CASchools) is included in the R package “AER”. This dataset
contains information on various characteristics of schools in California, such as test scores,
teacher salaries, and student demographics. It’s commonly used in econometrics and statistical
analysis to explore relationships between these variables and to illustrate various modeling
techniques.

# load the the data set
data(CASchools)
# get an overview
summary(CASchools)
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district school county grades
Length:420 Length:420 Sonoma : 29 KK-06: 61
Class :character Class :character Kern : 27 KK-08:359
Mode :character Mode :character Los Angeles: 27

Tulare : 24
San Diego : 21
Santa Clara: 20
(Other) :272

students teachers calworks lunch
Min. : 81.0 Min. : 4.85 Min. : 0.000 Min. : 0.00
1st Qu.: 379.0 1st Qu.: 19.66 1st Qu.: 4.395 1st Qu.: 23.28
Median : 950.5 Median : 48.56 Median :10.520 Median : 41.75
Mean : 2628.8 Mean : 129.07 Mean :13.246 Mean : 44.71
3rd Qu.: 3008.0 3rd Qu.: 146.35 3rd Qu.:18.981 3rd Qu.: 66.86
Max. :27176.0 Max. :1429.00 Max. :78.994 Max. :100.00

computer expenditure income english
Min. : 0.0 Min. :3926 Min. : 5.335 Min. : 0.000
1st Qu.: 46.0 1st Qu.:4906 1st Qu.:10.639 1st Qu.: 1.941
Median : 117.5 Median :5215 Median :13.728 Median : 8.778
Mean : 303.4 Mean :5312 Mean :15.317 Mean :15.768
3rd Qu.: 375.2 3rd Qu.:5601 3rd Qu.:17.629 3rd Qu.:22.970
Max. :3324.0 Max. :7712 Max. :55.328 Max. :85.540

read math
Min. :604.5 Min. :605.4
1st Qu.:640.4 1st Qu.:639.4
Median :655.8 Median :652.5
Mean :655.0 Mean :653.3
3rd Qu.:668.7 3rd Qu.:665.9
Max. :704.0 Max. :709.5

Upon examination we find that the dataset contains mostly numeric variables, but it lacks
two important ones we’re interested in: average test scores and student-teacher ratios.
However, we can calculate them using the available data. To find the student-teacher ratio, we
divide the total number of students by the number of teachers. For the average test score, we
just need to average the math and reading scores. In the next code chunk, we’ll demonstrate
how to create these variables as vectors and add them to the CASchools dataset.

# compute student-teacher ratio and append it to CASchools
CASchools$STR <- CASchools$students/CASchools$teachers
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# compute test score and append it to CASchools
CASchools$score <- (CASchools$read + CASchools$math)/2

If we ran summary(CASchools) again we would find the two variables of interest as additional
variables named STR and score.
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2 Linear Regression

Let’s suppose we were interested in the following regression model

𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝑆𝑇𝑅 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 𝑢
In this regression, we aim to explore how test scores (TestScore) are influenced by student-
teacher ratio (STR) and the percentage of English learners (english). The variable english
indicates the proportion of students who may require additional support or resources to im-
prove their English language skills within each school.

We would run this model in R using the lm() function and explore the regression estimates
with coeftest().

# run the model
model <- lm(score ~ STR + english, data = CASchools)
# report estimates
coeftest(model, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.032245 8.728225 78.5993 < 2e-16 ***
STR -1.101296 0.432847 -2.5443 0.01131 *
english -0.649777 0.031032 -20.9391 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

2.0.1 Hypothesis Tests and Confidence Intervals for a Single Coefficient

The coeftest() function in R, along with suitable options such as vcov. = vcovHC for robust
standard errors, automatically includes statistics such as standard errors, 𝑡-statistics, and 𝑝-
values, which is exactly what we need to test hypotheses about single coefficients (𝛽𝑗) in
regression models.
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We could also manually check these values calculating the 𝑡-statistics or 𝑝-values using the
provided output above and using R as a calculator. For example, using the definition of the
𝑝-value for a two-sided test, we can confirm the 𝑝-value for a test of the hypothesis that the
coefficient 𝛽1, which represents the coefficient onSTR, is approximately 0.01

# compute two-sided p-value
2 * (1 - pt(abs(coeftest(model, vcov. = vcovHC, type = "HC1")[2, 3]),

df = model$df.residual))

[1] 0.01130921

We can also compute confidence intervals for individual coefficients in the multiple regression
model by using the function confint(). This function computes confidence intervals at the
95% level by default.

# compute confidence intervals for all coefficients in the model
confint(model)

2.5 % 97.5 %
(Intercept) 671.4640580 700.6004311
STR -1.8487969 -0.3537944
english -0.7271113 -0.5724424

To obtain confidence intervals at a different level, say 90%, we set the argument level in our
call of confint() accordingly.

confint(model, level = 0.9)

5 % 95 %
(Intercept) 673.8145793 698.2499098
STR -1.7281904 -0.4744009
english -0.7146336 -0.5849200

A limitation of using confint() is its failure to incorporate robust standard errors when
computing confidence intervals. To address this, you can manually generate large-sample
confidence intervals that consider robust standard errors with the following method.

12



# compute robust standard errors
rob_se <- diag(vcovHC(model, type = "HC1"))^0.5

# compute robust 95% confidence intervals
rbind("lower" = coef(model) - qnorm(0.975) * rob_se,

"upper" = coef(model) + qnorm(0.975) * rob_se)

(Intercept) STR english
lower 668.9252 -1.9496606 -0.7105980
upper 703.1393 -0.2529307 -0.5889557

# compute robust 90% confidence intervals
rbind("lower" = coef(model) - qnorm(0.95) * rob_se,

"upper" = coef(model) + qnorm(0.95) * rob_se)

(Intercept) STR english
lower 671.6756 -1.8132659 -0.7008195
upper 700.3889 -0.3893254 -0.5987341

The output above shows that zero is not an element of the confidence interval for the coefficient
on STR, so we can reject the null hypothesis at significance levels of 5% and 10% (Note that
rejection at the 5% level implies rejection at the 10% level anyway). We can bring this
conclusion further via the 𝑝-value for STR: 0.00398 < 0.01, which indicates that this coefficient
estimate is significant at the 1% level.

2.0.2 Joint Hypothesis Testing

Let’s suppose now that we are interested in investigating the average effect on test scores
of reducing the student-teacher ratio when the expenditures per pupil and the percentage of
english learning pupils are held constant. Let us augment our model by an additional regressor
expenditure, that is a measure for the total expenditure per pupil in the district. For this
model, we will include expenditure as measured in thousands of dollars. Our new model
would be

𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝑆𝑇𝑅 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 𝛽3 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 + 𝑢

Let us now estimate the model:
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# scale expenditure to thousands of dollars
CASchools$expenditure <- CASchools$expenditure/1000

# estimate the model
model <- lm(score ~ STR + english + expenditure, data = CASchools)
coeftest(model, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 649.577947 15.458344 42.0212 < 2e-16 ***
STR -0.286399 0.482073 -0.5941 0.55277
english -0.656023 0.031784 -20.6398 < 2e-16 ***
expenditure 3.867901 1.580722 2.4469 0.01482 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated impact of a one-unit change in the student-teacher ratio on test scores, while
holding expenditure and the proportion of English learners constant, is −0.29. It is much
smaller than the estimated coefficient in our initial model where we didn’t include expenditure.
Additionally, this coefficient of STR is no longer statistically significant, even at a 10% signifi-
cance level, as indicated by a 𝑝-value of 0.55. This lack of significance for 𝛽1 may stem from a
larger standard error resulting from the inclusion of expenditure in the model, leading to less
precise estimation of the coefficient on 𝑆𝑇𝑅. This scenario highlights the challenge of deal-
ing with strongly correlated predictors, known as imperfect multicollinearity. The correlation
between 𝑆𝑇𝑅 and 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 can be determined using the cor() function.

# compute the sample correlation between 'STR' and 'expenditure'
cor(CASchools$STR, CASchools$expenditure)

[1] -0.6199822

This indicates a moderately strong negative correlation between the two variables.

The estimated model is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 649.58
(15.21)

− 0.29
(0.48)

𝑆𝑇𝑅 − 0.66
(0.04)

𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 3.87
(1.41)

𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒

Could we reject the hypothesis that both the 𝑆𝑇𝑅 coefficient and the 𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒 coefficient
are zero? To answer this, we need to conduct joint hypothesis tests, which involve placing
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restrictions on multiple regression coefficients. This differs from individual 𝑡-tests, where
restrictions are applied to a single coefficient.

To test whether both coefficients are zero, we will conduct an 𝐹 -test. To do this in R, we can
use the function linearHypothesis() contained in the package car.

# execute the function on the model object and provide both linear restrictions
# to be tested as strings
linearHypothesis(model, c("STR=0", "expenditure=0"))

Linear hypothesis test

Hypothesis:
STR = 0
expenditure = 0

Model 1: restricted model
Model 2: score ~ STR + english + expenditure

Res.Df RSS Df Sum of Sq F Pr(>F)
1 418 89000
2 416 85700 2 3300.3 8.0101 0.000386 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output reveals that the 𝐹 -statistic for this joint hypothesis test is 8.01 and the correspond-
ing 𝑝-value is about 0.0004. We can therefore reject the null hypothesis that both coefficients
are zero at the 0.1% level of significance.

A heteroskedasticity-robust version of this 𝐹 -test (which leads to the same conclusion)
can be conducted as follows:

# heteroskedasticity-robust F-test
linearHypothesis(model, c("STR=0", "expenditure=0"), white.adjust = "hc1")

Linear hypothesis test

Hypothesis:
STR = 0
expenditure = 0

Model 1: restricted model

15



Model 2: score ~ STR + english + expenditure

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 5.4337 0.004682 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The standard output of a model summary in R also reports an 𝐹 -statistic and the correspond-
ing p-value. This 𝐹 -test examines whether all of the population coefficients in the model
except for the intercept are zero, so the hypotheses would be 𝐻0 ∶ 𝛽1 = 0, 𝛽2 = 0, 𝛽3 = 0
vs. 𝐻1 ∶ 𝛽𝑗 ≠ 0 for at least one 𝑗 = 1, 2, 3.
We now check whether the 𝐹 -statistic belonging to the 𝑝-value listed in the model’s summary
matches with the result reported by linearHypothesis()

# execute the function on the model object and provide the restrictions
# to be tested as a character vector
linearHypothesis(model, c("STR=0", "english=0", "expenditure=0"))

Linear hypothesis test

Hypothesis:
STR = 0
english = 0
expenditure = 0

Model 1: restricted model
Model 2: score ~ STR + english + expenditure

Res.Df RSS Df Sum of Sq F Pr(>F)
1 419 152110
2 416 85700 3 66410 107.45 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# Access the overall F-statistic from the model's summary
summary(model)$fstatistic
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value numdf dendf
107.4547 3.0000 416.0000

Both results match. The 𝐹 -test rejects the null hypothesis that the model has no power in
explaining test scores. It is nevertheless important to note that the 𝐹 -statistic reported by
summary is not robust to heteroskedasticity.

2.1 Multiple Regression

In order to reduce the risk of omitted variable bias, it is essential to include control variables
in regression models. In our case, we are interested in estimating the causal effect of a change
in the student-teacher ratio on test scores. We will now see an example of how to use multiple
regression in order to alleviate omitted variable bias and how to report these results using
R.

By including 𝑒𝑛𝑔𝑙𝑖𝑠ℎ as control variable, we aimed to control for unobservable student char-
acteristics which correlate with the student-teacher ratio and are assumed to have an impact
on test score. But there are other interesting variables to observe:

• lunch: the share of students that qualify for a subsidized or even a free lunch at school.

• calworks: the percentage of students that qualify for the CalWorks income assistance
program.

Students eligible for CalWorks live in families with a total income below the threshold for
the subsidized lunch program, so both variables are indicators for the share of economically
disadvantaged children. We suspect both indicators are highly correlated.

# estimate the correlation between 'calworks' and 'lunch'
cor(CASchools$calworks, CASchools$lunch)

[1] 0.7394218

If they are highly correlated as we just confirmed, there is no standard way to proceed when
deciding which variable to use. In any case it may not be a good idea to use both variables
as regressors in view of collinearity. Let’s first explore further these control variables and
how they correlate with the dependent variable by plotting them against test scores. When
computing simultaneously several plots, we may use layout() to divide the plotting area and
the matrix m to specify the location of the plots (see ?layout).
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# set up arrangement of plots
m <- rbind(c(1, 2), c(3, 0))
graphics::layout(mat = m)

# scatterplots
plot(score ~ english,

data = CASchools,
col = "steelblue",
pch = 20,
xlim = c(0, 100),
cex.main = 0.7,
xlab="English",
ylab="Score",
main = "Percentage of English language learners")

plot(score ~ lunch,
data = CASchools,
col = "steelblue",
pch = 20,
cex.main = 0.7,
xlab="Lunch",
ylab="Score",
main = "Percentage qualifying for reduced price lunch")

plot(score ~ calworks,
data = CASchools,
col = "steelblue",
pch = 20,
xlim = c(0, 100),
cex.main = 0.7,
xlab="CalWorks",
ylab="Score",
main = "Percentage qualifying for income assistance")

We observe negative relationships. Let’s check the correlation coefficients.

# estimate correlation between student characteristics and test scores
cor(CASchools$score, CASchools$english)

[1] -0.6441238
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cor(CASchools$score, CASchools$lunch)

[1] -0.868772

cor(CASchools$score, CASchools$calworks)

[1] -0.6268533

We shall consider five different model equations:

TestScore = 𝛽0 + 𝛽1 STR+ 𝑢, (2.1)
TestScore = 𝛽0 + 𝛽1 STR+ 𝛽2 english+ 𝑢, (2.2)
TestScore = 𝛽0 + 𝛽1 STR+ 𝛽2 english+ 𝛽3 lunch+ 𝑢, (2.3)
TestScore = 𝛽0 + 𝛽1 STR+ 𝛽2 english+ 𝛽4 calworks+ 𝑢, (2.4)
TestScore = 𝛽0 + 𝛽1 STR+ 𝛽2 english+ 𝛽3 lunch+ 𝛽4 calworks+ 𝑢. (2.5)

The best way to report regression results is in a table. The stargazer package is very con-
venient for this purpose. It provides a function that generates professionally looking HTML
and LaTeX tables that satisfy scientific standards. One simply has to provide one or multiple
object(s) of class lm. The rest is done by the function stargazer().
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# load the stargazer library
library(stargazer)

# estimate different model specifications
spec1 <- lm(score ~ STR, data = CASchools)
spec2 <- lm(score ~ STR + english, data = CASchools)
spec3 <- lm(score ~ STR + english + lunch, data = CASchools)
spec4 <- lm(score ~ STR + english + calworks, data = CASchools)
spec5 <- lm(score ~ STR + english + lunch + calworks, data = CASchools)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(spec1, type = "HC1"))),

sqrt(diag(vcovHC(spec2, type = "HC1"))),
sqrt(diag(vcovHC(spec3, type = "HC1"))),
sqrt(diag(vcovHC(spec4, type = "HC1"))),
sqrt(diag(vcovHC(spec5, type = "HC1"))))

# generate a LaTeX table using stargazer
stargazer(spec1, spec2, spec3, spec4, spec5,

se = rob_se,
type = "text",
digits = 3,
header = F,
column.labels = c("(I)", "(II)", "(III)", "(IV)", "(V)"))

===============================================================================================================================================
Dependent variable:

---------------------------------------------------------------------------------------------------------------------------
score

(I) (II) (III) (IV) (V)
(1) (2) (3) (4) (5)

-----------------------------------------------------------------------------------------------------------------------------------------------
STR -2.280*** -1.101** -0.998*** -1.308*** -1.014***

(0.519) (0.433) (0.270) (0.339) (0.269)

english -0.650*** -0.122*** -0.488*** -0.130***
(0.031) (0.033) (0.030) (0.036)

lunch -0.547*** -0.529***
(0.024) (0.038)
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calworks -0.790*** -0.048
(0.068) (0.059)

Constant 698.933*** 686.032*** 700.150*** 697.999*** 700.392***
(10.364) (8.728) (5.568) (6.920) (5.537)

-----------------------------------------------------------------------------------------------------------------------------------------------
Observations 420 420 420 420 420
R2 0.051 0.426 0.775 0.629 0.775
Adjusted R2 0.049 0.424 0.773 0.626 0.773
Residual Std. Error 18.581 (df = 418) 14.464 (df = 417) 9.080 (df = 416) 11.654 (df = 416) 9.084 (df = 415)
F Statistic 22.575*** (df = 1; 418) 155.014*** (df = 2; 417) 476.306*** (df = 3; 416) 234.638*** (df = 3; 416) 357.054*** (df = 4; 415)
===============================================================================================================================================
Note: *p<0.1; **p<0.05; ***p<0.01

Each column in this table contains most of the information provided also by coeftest()
and summary() for each of the models under consideration. Each of the coefficient estimates
includes its standard error in parenthesis and one, two or three asterisks representing their
significance levels. Although 𝑡-statistics are not reported, one may compute them manually
simply by dividing a coefficient estimate by the corresponding standard error. At the bottom
of the table summary statistics for each model and a legend are reported.

From the model comparison we observe that including control variables approximately cuts
the coefficient on 𝑆𝑇𝑅 in half. Additionally, the estimation seems to remain unaffected by the
specific set of control variables employed. Thus, the inference drawn is that, under all other
conditions held constant, reducing the student-teacher ratio by one unit is associated with an
estimated average rise in test scores of roughly 1 point.

Incorporating student characteristics as controls increased both 𝑅2 and ̄𝑅2 from about 0.05
(spec1) to about 0.77 (spec3 and spec5), indicating these variables’ suitability as predictors
for test scores.

We also observe that the coefficients for the control variables are not significant in all models.
For example in spec5, the coefficient on 𝑐𝑎𝑙𝑤𝑜𝑟𝑘𝑠 is not significantly different from zero at the
10% level.

Lastly, we see that the effect on the estimate (and its standard error) of the coefficient on
𝑆𝑇𝑅 when adding 𝑐𝑎𝑙𝑤𝑜𝑟𝑘𝑠 to the base specification spec3 is minimal. Hence, we can identify
calworks as an unnecessary control variable, especially considering the incorporation of 𝑙𝑢𝑛𝑐ℎ
in this model.
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3 Nonlinear Regression Functions

Sometimes a nonlinear regression function is better suited for estimating the population rela-
tionship between the regressor 𝑋 and the regressand 𝑌 . Let’s have a look at an example that
explores the relationship between the income of schooling districts and their test scores.

We start our analysis by computing the correlation between both variables.

cor(CASchools$income, CASchools$score)

[1] 0.7124308

Income and test score are positively correlated: school districts with above-average income
tend to achieve above-average test scores. But does a linear regression adequately model the
data? To investigate this further, let’s visualize the data by plotting it and adding a linear
regression line.

# fit a simple linear model
linear_model<- lm(score ~ income, data = CASchools)

# plot the observations
plot(CASchools$income, CASchools$score,

col = "steelblue",
pch = 20,
xlab = "District Income (thousands of dollars)",
ylab = "Test Score",
cex.main = 0.9,
main = "Test Score vs. District Income and a Linear OLS Regression Function")

# add the regression line to the plot
abline(linear_model,

col = "red",
lwd = 2)

legend("bottomright", legend="linear fit",lwd=2,col="red")
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The plot shows that the linear regression line seems to overestimate the true relationship
when income is either very high or very low and it tends to underestimates it for the middle
income group. Luckily, Ordinary Least Squares (OLS) isn’t limited to linear regressions of the
predictors. We have the flexibility to model test scores as a function of income and the square
of income. This leads us to the following regression model:

𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑖𝑛𝑐𝑜𝑚𝑒𝑖 + 𝛽2 𝑖𝑛𝑐𝑜𝑚𝑒2𝑖 + 𝑢𝑖

which is a quadratic regression model. Here we treat 𝑖𝑛𝑐𝑜𝑚𝑒2 as an additional explanatory
variable.

In R, we can fit the model again with lm() but we have to use the ^ operator in conjunction
with the function I() to add the quadratic term as an additional regressor to the argument
formula. The reason is that the regression formula we pass to formula is converted to an
object of the class formula, and for objects of this class, the operators +, -, * and ^ have a
nonarithmetic interpretation. I() ensures that they are used as arithmetical operators (see
?I)

# fit the quadratic Model
quadratic_model <- lm(score ~ income + I(income^2), data = CASchools)

# obtain the model summary
coeftest(quadratic_model, vcov. = vcovHC, type = "HC1")

t test of coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 607.3017435 2.9017544 209.2878 < 2.2e-16 ***
income 3.8509939 0.2680942 14.3643 < 2.2e-16 ***
I(income^2) -0.0423084 0.0047803 -8.8505 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated function is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 607.3
(2.90)

+ 3.85
(0.27)

𝑖𝑛𝑐𝑜𝑚𝑒𝑖 − 0.0423
(0.0048)

𝑖𝑛𝑐𝑜𝑚𝑒2𝑖

We can test the hypothesis that the relationship between test scores and income is linear
against the alternative that it is quadratic, by testing

𝐻0 ∶ 𝛽2 = 0 𝑣𝑠. 𝐻1 ∶ 𝛽2 ≠ 0
since 𝛽2 = 0 would result in a simple linear equation and 𝛽2 ≠ 0 implies a quadratic relation-
ship.

We can manually compute the 𝑡-value reported in the table as 𝑡 = ( ̂𝛽2 − 0)/𝑆𝐸( ̂𝛽2) =
−0.042308/0.00478 = −8.85. With this 𝑡-value we can reject the null hypothesis at any
common level of significance and we may conclude that the relationship is not linear. We
could also have drawn the same conclusion by looking at the asterisks in the summary table,
where we observe that the coefficient for the quadratic term is highly significant at the 0.1%
level (***).

We will now draw the same scatter plot as for the linear model and add the regression line
for the quadratic model. Since abline() only plots straight lines, it cannot be used here,
but we can use lines() function instead, which is suitable for plotting nonstraight lines (see
?lines). The most basic call of lines() is lines(x_values, y_values) where x_values
and y_values are vectors of the same length that provide coordinates of the points to be
sequentially connected by a line. This requires sorted coordinate pairs according to the X-
values. We may use the function order() to sort the fitted values of score according to the
observations of income, obtained from our quadratic model.

# draw a scatterplot of the observations for income and test score
plot(CASchools$income, CASchools$score,

col = "steelblue",
pch = 20,
xlab = "District Income (thousands of dollars)",
ylab = "Test Score",

24



main = "Estimated Linear and Quadratic Regression Functions")

# add a linear function to the plot
abline(linear_model, col = "green", lwd = 2)

# add quatratic function to the plot
order_id <- order(CASchools$income)

lines(x = CASchools$income[order_id],
y = fitted(quadratic_model)[order_id],
col = "red",
lwd = 2)

legend("bottomright",legend=c("Linear Line","Quadratic Line"),
lwd=2,col=c("green","red"))
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As the plot shows, the quadratic function appears to provide a better fit to the data compared
to the linear function.

3.1 Polynomials

The method employed to derive a quadratic model can be extended to polynomial models of
any degree 𝑟

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋2
𝑖 +…+ 𝛽𝑟𝑋𝑟

𝑖 + 𝑢𝑖
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We can estimate polynomial models in R using the function poly(). The polynomial degrees
(𝑟) must be indicated into the degree argument of the function. For a cubic model:

# estimate a cubic model
cubic_model <- lm(score ~ poly(income, degree = 3, raw = TRUE), data = CASchools)

The function poly() generates orthogonal polynomials that default to being orthogonal to
the constant term. By setting raw = TRUE, we evaluate raw polynomials instead. For more
information, refer to ?poly.

3.1.1 Joint Hypothesis Testing

A common dilemma in practice is selecting the optimal polynomial order. Similar to the
quadratic regression model, we can test the null hypothesis suggesting that the true relationship
is linear, in contrast to the alternative hypothesis proposing a polynomial relationship.

𝐻0 ∶ 𝛽2 = 0, 𝛽3 = 0,… , 𝛽𝑟 = 0 vs. 𝐻1 ∶ at least one 𝛽𝑗 ≠ 0, 𝑗 = 2,… , 𝑟.

This represents a joint null hypothesis with 𝑟 − 1 restrictions, which can be tested using the
𝐹 -test previously described. The function linearHypothesis() facilitates such testing. For
instance, we can test the null of a linear model against the alternative of a polynomial with a
maximum degree 𝑟 = 3 as demonstrated below.

# test the hypothesis of a linear model against quadratic or cubic alternatives

# set up hypothesis matrix
R <- rbind(c(0, 0, 1, 0),

c(0, 0, 0, 1))

# do the test
linearHypothesis(cubic_model,

hypothesis.matrix = R,
white.adj = "hc1")

Linear hypothesis test

Hypothesis:
poly(income, degree = 3, raw = TRUE)2 = 0
poly(income, degree = 3, raw = TRUE)3 = 0
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Model 1: restricted model
Model 2: score ~ poly(income, degree = 3, raw = TRUE)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 37.691 9.043e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We have created and supplied the hypothesis matrix𝑅 as the input argument hypothesis.matrix.
This is convenient when the constraints involve several coefficients and when coefficients have
long names, such as when using poly() (see summary(cubic_model)). The interpretation of
the hypothesis matrix 𝑅 by linearHypothesis() is best understood through matrix algebra.
For our case with two linear constraints it would be as follows:

𝑅𝛽 = 𝑠

(0 0 1 0
0 0 0 1)

⎛⎜⎜⎜⎜
⎝

𝛽0
𝛽1
𝛽2
𝛽3

⎞⎟⎟⎟⎟
⎠

= (0
0) ⇒ (𝛽2

𝛽3
) = (0

0)

linearHypothesis() uses the zero vector for 𝑠 by default, see ?linearHypothesis.

From the results of the joint hypothesis test, with a very small 𝑝-value, we can reject the
null hypothesis of a linear relationship. However, we still face the challenge of choosing the
right polynomial degree 𝑟. In other words, how many powers of 𝑋 should be included in a
polynomial regression. Increasing the degree 𝑟 introduces more flexibility into the regression
function, but adding more regressors can reduce the precision of the estimated coefficients.

While there is no general rule to select 𝑟, this could be determined by sequential testing,
where individual hypotheses are tested sequentially in the following steps:

1. Estimate the polynomial regression model for a maximum value of 𝑟.
2. Use a 𝑡-test to test 𝛽𝑟 = 0. If the null hypothesis is rejected, then 𝑋𝑟 belongs in the

regression equation.

3. If the null is accepted, 𝑋𝑟 can be excluded from the model. Then repeat step 1 with
order 𝑟 − 1 and test whether 𝛽𝑟−1 = 0. If the null is rejected, use a polynomial model of
order 𝑟 − 1.
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4. If the null is not rejected in step 3, continue this procedure until the coefficient on the
highest power in your polynomial is statistically significant.

To choose the initial maximum value of 𝑟, Stock and Watson (2015) suggest to choose 2, 3 or 4
for applications on economic data, due to its usual smoothness (absence of jumps or “spikes).

We will apply this sequential testing to our cubic model reporting robust standard errors:

# test the hypothesis using robust standard errors
coeftest(cubic_model, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value
(Intercept) 6.0008e+02 5.1021e+00 117.6150
poly(income, degree = 3, raw = TRUE)1 5.0187e+00 7.0735e-01 7.0950
poly(income, degree = 3, raw = TRUE)2 -9.5805e-02 2.8954e-02 -3.3089
poly(income, degree = 3, raw = TRUE)3 6.8549e-04 3.4706e-04 1.9751

Pr(>|t|)
(Intercept) < 2.2e-16 ***
poly(income, degree = 3, raw = TRUE)1 5.606e-12 ***
poly(income, degree = 3, raw = TRUE)2 0.001018 **
poly(income, degree = 3, raw = TRUE)3 0.048918 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated cubic regression function relating district income to test scores is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 600.1
(5.1)

+ 5.02
(0.71)

𝐼𝑛𝑐𝑜𝑚𝑒 − 0.096
(0.029)

𝐼𝑛𝑐𝑜𝑚𝑒2 + 0.00069
(0.00035)

𝐼𝑛𝑐𝑜𝑚𝑒3

The 𝑡-statistic on 𝐼𝑛𝑐𝑜𝑚𝑒3 is 1.98, so the null hypothesis that the regression function is a
quadratic is rejected against the alternative that it is a cubic at the 5% level.

We can additionally test if the coefficients for 𝐼𝑛𝑐𝑜𝑚𝑒2 and 𝐼𝑛𝑐𝑜𝑚𝑒3 are jointly significant
using a robust version of the 𝐹 -test:

# perform robust F-test
linearHypothesis(cubic_model,

hypothesis.matrix = R,
vcov. = vcovHC, type = "HC1")
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Linear hypothesis test

Hypothesis:
poly(income, degree = 3, raw = TRUE)2 = 0
poly(income, degree = 3, raw = TRUE)3 = 0

Model 1: restricted model
Model 2: score ~ poly(income, degree = 3, raw = TRUE)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 418
2 416 2 29.678 8.945e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With a 𝑝-value below 0.001, we reject the null hypothesis that the regression function is linear
against the alternative of a quadratic or cubic relationship.

3.1.2 Interpretation of coefficients

The coefficients in polynomial regressions do not have a simple interpretation. The best way
to interpret them is to calculate the estimated effect on 𝑌 associated with a change in 𝑋 for
one or more values of 𝑋.

For example, if we would like to know the predicted change in test scores when income changes
from 10 to 11 (thousand dollars) based on our estimated quadratic regression function

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 607.3 + 3.85 Income− 0.0423 Income2

we would compute the Δ ̂𝑌 associated with that specific unit change in income using the
following formula:

Δ̂𝑌 = ( ̂𝛽0 + ̂𝛽1 × 11 + ̂𝛽2 × 112) − ( ̂𝛽0 + ̂𝛽1 × 10 + ̂𝛽2 × 102)

We can compute Δ ̂𝑌 in R using predict()
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# compute and assign the quadratic model
quadratic_model <- lm(score ~ income + I(income^2), data = CASchools)

# set up data for prediction
new_data <- data.frame(income = c(10, 11))

# do the prediction
Y_hat <- predict(quadratic_model, newdata = new_data)

# compute the difference
diff(Y_hat)

2
2.962517

The expected change in 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 when increasing 𝑖𝑛𝑐𝑜𝑚𝑒 from 10 to 11 (thousand dollars)
is about 2.96 points. Note that, since the relationship is not linear, this unit change effect will
vary depending on the pair of values of 𝑋 selected. One way to notice this is by plotting the
estimated quadratic regression function.

3.2 Logarithms

Another approach to express a nonlinear regression function involves using the natural loga-
rithm of 𝑌 and/or 𝑋. Logarithms help convert variable changes into percentages, which is
useful as many relationships are naturally described in terms of percentages. There are three
different situations where logarithms are used: when 𝑋 is transformed by taking its logarithm
but 𝑌 is not; when 𝑌 is transformed to its logarithm but 𝑋 is not; and when both 𝑌 and 𝑋
are transformed to their logarithm.

3.2.1 Case I: X is in logarithms, Y is not.

In this case, sometimes referred to as a linear-log model, the regression model is

𝑌𝑖 = 𝛽0 + 𝛽1 ln(𝑋𝑖) + 𝑢𝑖, 𝑖 = 1,… , 𝑛.

As for polynomial regressions, there is no need to create the logged variable in advance, but
we simply adjust the formula argument in lm() to log-transform the variable of interest.

30



# estimate a level-log model
LinearLog_model <- lm(score ~ log(income), data = CASchools)

# compute robust summary
coeftest(LinearLog_model,

vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 557.8323 3.8399 145.271 < 2.2e-16 ***
log(income) 36.4197 1.3969 26.071 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 557.8
(3.84)

+ 36.42
(1.40)

ln(𝐼𝑛𝑐𝑜𝑚𝑒)

We plot this function

# draw a scatterplot
plot(score ~ income,

col = "steelblue",
pch = 20,
data = CASchools,
ylab="Score",
xlab="Income",
main = "Linear-Log Regression Line")

# add the linear-log regression line
order_id <- order(CASchools$income)

lines(CASchools$income[order_id],
fitted(LinearLog_model)[order_id],
col = "red",
lwd = 2)

legend("bottomright",legend = "Linear-log line",lwd = 2,col ="red")
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We can interpret ̂𝛽1 as follows: a 1% increase in income is associated with an average increase
in test scores of 0.01× 36.42 = 0.36 points. If we wanted to compute the change in 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒
of a one unit change in 𝑖𝑛𝑐𝑜𝑚𝑒, we would compute the Δ ̂𝑌 just as we did with polynomials.

3.2.2 Case II: Y is in logarithms, X is not

In this second case, the log-linear model, the regression function is

ln(𝑌𝑖) = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖, 𝑖 = 1,… , 𝑛.

# estimate a log-linear model
LogLinear_model <- lm(log(score) ~ income, data = CASchools)

# obtain a robust coefficient summary
coeftest(LogLinear_model,

vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.43936234 0.00289382 2225.210 < 2.2e-16 ***
income 0.00284407 0.00017509 16.244 < 2.2e-16 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

ln( ̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒) = 6.439
(0.003)

+ 0.00284
(0.0002)

𝐼𝑛𝑐𝑜𝑚𝑒

An increase in 𝑖𝑛𝑐𝑜𝑚𝑒 of one unit ($1000) is associated with an average increase in 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒
of 100 × 0.00284 = 0.284%
Note that when the dependent variable is in logarithms, one cannot use 𝑒log(⋅) to transform
predictions back to the original scale, as pointed by Stock and Watson (2015).

3.2.3 Case III: X and Y are in logarithms

The log-log regression model is

ln(𝑌𝑖) = 𝛽0 + 𝛽1 ln(𝑋𝑖) + 𝑢𝑖, 𝑖 = 1,… , 𝑛.

# estimate the log-log model
LogLog_model <- lm(log(score) ~ log(income), data = CASchools)

# print robust coefficient summary
coeftest(LogLog_model,

vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 6.3363494 0.0059246 1069.501 < 2.2e-16 ***
log(income) 0.0554190 0.0021446 25.841 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated log-log regression function is

ln( ̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒) = 6.336
(0.006)

+ 0.0554
(0.002)

ln(𝐼𝑛𝑐𝑜𝑚𝑒)

A 1% increase in 𝐼𝑛𝑐𝑜𝑚𝑒 is associated with an average increase in 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 of 0.055%
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We now plot the log-linear and the log-log regression models together

# generate a scatterplot
plot(log(score) ~ income,

col = "steelblue",
pch = 20,
data = CASchools,
ylab="log(Score)",
xlab="Income",
main = "Log-Linear Regression Function")

# add the log-linear regression line
order_id <- order(CASchools$income)

lines(CASchools$income[order_id],
fitted(LogLinear_model)[order_id],
col = "red",
lwd = 2)

# add the log-log regression line
lines(sort(CASchools$income),

fitted(LogLog_model)[order(CASchools$income)],
col = "green",
lwd = 2)

# add a legend
legend("bottomright",

legend = c("log-linear model", "log-log model"),
lwd = 2,
col = c("red", "green"))

3.2.4 Comparing logarithmic specifications

Which of the log regression models best fits the data? The ̄𝑅2 can be used to compare the log-
linear and log-log models. Similarly, the ̄𝑅2 can be used to compare the linear-log regression
and the linear regression of 𝑌 against 𝑋. But unfortunately, the ̄𝑅2 cannot be used to compare
the linear-log and the log-log model because their dependent variables are different (one is 𝑌 ,
the other one is ln(𝑌 )). Because of this problem, the best thing to do in a particular application
is to decide, using economic theory and experts’ knowledge of the problem, whether it makes
sense to specify 𝑌 in logarithms.
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# compute the adj. R^2 for the nonlinear models
adj_R2 <-rbind("quadratic" = summary(quadratic_model)$adj.r.squared,

"cubic" = summary(cubic_model)$adj.r.squared,
"LinearLog" = summary(LinearLog_model)$adj.r.squared,
"LogLinear" = summary(LogLinear_model)$adj.r.squared,
"LogLog" = summary(LogLog_model)$adj.r.squared)

# assign column names
colnames(adj_R2) <- "adj_R2"

adj_R2

adj_R2
quadratic 0.5540444
cubic 0.5552279
LinearLog 0.5614605
LogLinear 0.4970106
LogLog 0.5567251

From those models where the dependent variable is 𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒, we observe a very similar
adjusted fit. We can compare the cubic and the linear-log model by plotting their estimated
regression functions.
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# generate a scatterplot
plot(score ~ income,

data = CASchools,
col = "steelblue",
pch = 20,
ylab="Score",
xlab="Income",
main = "Linear-Log and Cubic Regression Functions")

# add the linear-log regression line
order_id <- order(CASchools$income)

lines(CASchools$income[order_id],
fitted(LinearLog_model)[order_id],
col = "darkgreen",
lwd = 2)

# add the cubic regression line
lines(x = CASchools$income[order_id],

y = fitted(cubic_model)[order_id],
col = "red",
lwd = 2)

# add a legend
legend("bottomright",

legend = c("Linear-Log model", "Cubic model"),
lwd = 2,
col = c("darkgreen", "red"))

We appreciate a nearly identical look for both models, although we may prefer the linear-log
model for simplicity, since it does not include higher-degree polynomials.

3.3 Interactions Between Independent Variables

Sometimes it is interesting to learn how the effect on 𝑌 of a change in an independent variable
depends on the value of another independent variable. For example, we may ask if districts
with many English learners benefit differently from a decrease in the student-teacher ratio
compared to those with fewer English learning students. We can assess this by using a multiple
regression model and including an interaction term.

We consider three cases: when both independent variables are binary, when one is binary and
the other is continuous, and when both are continuous.

36



10 20 30 40 50

62
0

66
0

70
0

Linear−Log and Cubic Regression Functions

Income

S
co

re

Linear−Log model
Cubic model

3.3.1 Interactions Between Two Binary Variables

Let

HiSTR = {1, if STR ≥ 20
0, else

HiEL = {1, if english ≥ 10
0, else

In R, we construct this dummies as follows

# append HiSTR to CASchools
CASchools$HiSTR <- as.numeric(CASchools$STR >= 20)

# append HiEL to CASchools
CASchools$HiEL <- as.numeric(CASchools$english >= 10)

We now estimate the model

𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 𝛽0 + 𝛽1 𝐻𝑖𝑆𝑇𝑅 + 𝛽2 𝐻𝑖𝐸𝐿 + 𝛽3 𝐻𝑖𝑆𝑇𝑅 ×𝐻𝑖𝐸𝐿 + 𝑢𝑖.

We can simply indicate HiEL * HiSTR inside the lm() formula to add the interaction term to
the model. Note that this adds 𝐻𝑖𝐸𝐿, 𝐻𝑖𝑆𝑇𝑅 and their interaction as regressors, whereas
indicating HiEL:HiSTR only adds the interaction term.
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# estimate the model with a binary interaction term
bi_model <- lm(score ~ HiSTR * HiEL, data = CASchools)

# print a robust summary of the coefficients
coeftest(bi_model, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 664.1433 1.3881 478.4589 < 2.2e-16 ***
HiSTR -1.9078 1.9322 -0.9874 0.3240
HiEL -18.3155 2.3340 -7.8472 3.634e-14 ***
HiSTR:HiEL -3.2601 3.1189 -1.0453 0.2965
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 664.1
(1.39)

− 1.9
(1.93)

HiSTR− 18.3
(2.33)

HiEL− 3.3
(3.12)

(HiSTR×HiEL)

According to this model, when moving from a school district with a low student-teacher ratio
to one with a high ratio, the average effect on test scores depends on the percentage of English
learners (HiEL), and can be computed as −1.9− 3.3 ×𝐻𝑖𝐸𝐿. This is, for districts with fewer
English learners (𝐻𝑖𝐸𝐿 = 0), the expected decrease in test scores is 1.9 points. However, for
districts with a higher proportion of English learners (𝐻𝑖𝐸𝐿 = 1), the predicted decrease in
test scores is 1.9 + 3.3 = 5.2 points.

We can estimate the mean test score for each possible combination of the included binary
variables

# estimate means for all combinations of HiSTR and HiEL

# 1.
predict(bi_model, newdata = data.frame("HiSTR" = 0, "HiEL" = 0))

1
664.1433
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# 2.
predict(bi_model, newdata = data.frame("HiSTR" = 0, "HiEL" = 1))

1
645.8278

# 3.
predict(bi_model, newdata = data.frame("HiSTR" = 1, "HiEL" = 0))

1
662.2354

# 4.
predict(bi_model, newdata = data.frame("HiSTR" = 1, "HiEL" = 1))

1
640.6598

We verify that these predictions are differences in the coefficient estimates presented in the
regression equation

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = ̂𝛽0 = 664.1 ⇔ 𝐻𝑖𝑆𝑇𝑅 = 0, 𝐻𝑖𝐸𝐿 = 0.
̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = ̂𝛽0 + ̂𝛽2 = 664.1 − 18.3 = 645.8 ⇔ 𝐻𝑖𝑆𝑇𝑅 = 0, 𝐻𝑖𝐸𝐿 = 1.
̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = ̂𝛽0 + ̂𝛽1 = 664.1 − 1.9 = 662.2 ⇔ 𝐻𝑖𝑆𝑇𝑅 = 1, 𝐻𝑖𝐸𝐿 = 0.

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = ̂𝛽0 + ̂𝛽1 + ̂𝛽2 + ̂𝛽3 = 664.1 − 1.9 − 18.3 − 3.3 = 640.6 ⇔ 𝐻𝑖𝑆𝑇𝑅 = 1, 𝐻𝑖𝐸𝐿 = 1.

3.3.2 Interactions Between a Continuous and a Binary Variable

This specification where the interaction term includes a continuous variable (𝑋𝑖) and a binary
variable (𝐷𝑖) allows for the slope to depend on the binary variable. There are three different
possibilities:

1. Different intercepts, same slope:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝑢𝑖
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2. Different intercepts and slopes:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝐷𝑖 + 𝛽3 × (𝑋𝑖 ×𝐷𝑖) + 𝑢𝑖

3. Same intercept, different slopes:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2(𝑋𝑖 ×𝐷𝑖) + 𝑢𝑖.
Does the effect on test scores of cutting the student-teacher ratio depend on whether the
percentage of students still learning English is high or low? One way to answer this question
is to use a specification that allows for two different regression lines, depending on whether
there is a high or a low percentage of English learners. This is achieved using the different
intercept/different slope specification. We estimate the regression model

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝐻𝑖𝐸𝐿𝑖 + 𝛽2 (𝑆𝑇𝑅𝑖 ×𝐻𝑖𝐸𝐿𝑖) + 𝑢𝑖

# estimate the model
bci_model <- lm(score ~ STR + HiEL + STR * HiEL, data = CASchools)

# print robust summary of coefficients
coeftest(bci_model, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 682.24584 11.86781 57.4871 <2e-16 ***
STR -0.96846 0.58910 -1.6440 0.1009
HiEL 5.63914 19.51456 0.2890 0.7727
STR:HiEL -1.27661 0.96692 -1.3203 0.1875
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2
(11.87)

− 0.97
(0.59)

𝑆𝑇𝑅 + 5.6
(19.51)

𝐻𝑖𝐸𝐿 − 1.28
(0.97)

(𝑆𝑇𝑅 ×𝐻𝑖𝐸𝐿).

The estimated regression line for districts with a low fraction of English learners (𝐻𝑖𝐸𝐿 = 0)
is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2 − 0.97 𝑆𝑇𝑅𝑖
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while the one for districts with a high fraction of English learners (𝐻𝑖𝐸𝐿 = 1) is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 682.2 + 5.6 − 0.97 𝑆𝑇𝑅𝑖 − 1.28 𝑆𝑇𝑅𝑖
= 687.8 − 2.25 𝑆𝑇𝑅𝑖.

The expected rise in test scores after decreasing the student-teacher ratio by one unit is roughly
0.97 points in districts with a low proportion of English learners, but 2.25 points in districts
with a high concentration of English learners. The coefficient on the interaction term, “𝑆𝑇𝑅×
𝐻𝑖𝐸𝐿”, indicates that the contrast between these effects amounts to 1.28 points.

We now plot both regression lines from the model by using different colors to differentiate each
of the 𝑆𝑇𝑅 levels.

# identify observations with english >= 10
id <- CASchools$english >= 10

# plot observations with HiEL = 0 as red dots
plot(CASchools$STR[!id], CASchools$score[!id],

xlim = c(0, 27),
ylim = c(600, 720),
pch = 20,
col = "red",
main = "",
xlab = "Class Size",
ylab = "Test Score")

# plot observations with HiEL = 1 as green dots
points(CASchools$STR[id], CASchools$score[id],

pch = 20,
col = "green")

# read out estimated coefficients of bci_model
coefs <- bci_model$coefficients

# draw the estimated regression line for HiEL = 0
abline(coef = c(coefs[1], coefs[2]),

col = "red",
lwd = 1.5)

# draw the estimated regression line for HiEL = 1
abline(coef = c(coefs[1] + coefs[3], coefs[2] + coefs[4]),
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col = "green",
lwd = 1.5 )

# add a legend to the plot
legend("topleft",

pch = c(20, 20),
col = c("red", "green"),
legend = c("HiEL = 0", "HiEL = 1"))
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3.3.3 Interactions Between Two Continuous Variables

Let’s now examine the interaction between the continuous variables student-teacher ratio
(𝑆𝑇𝑅) and the percentage of English learners (𝑒𝑛𝑔𝑙𝑖𝑠ℎ).

# estimate regression model including the interaction between 'english' and 'STR'
cci_model <- lm(score ~ STR + english + english * STR, data = CASchools)

# print summary
coeftest(cci_model, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 686.3385268 11.7593466 58.3654 < 2e-16 ***
STR -1.1170184 0.5875136 -1.9013 0.05796 .
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english -0.6729119 0.3741231 -1.7986 0.07280 .
STR:english 0.0011618 0.0185357 0.0627 0.95005
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is

̂𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒 = 686.3
(11.76)

− 1.12
(0.59)

𝑆𝑇𝑅 − 0.67
(0.37)

𝑒𝑛𝑔𝑙𝑖𝑠ℎ + 0.0012
(0.02)

(𝑆𝑇𝑅 × 𝑒𝑛𝑔𝑙𝑖𝑠ℎ).

Before proceeding with the interpretations, let us explore the quartiles of 𝑒𝑛𝑔𝑙𝑖𝑠ℎ

summary(CASchools$english)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.000 1.941 8.778 15.768 22.970 85.540

When the percentage of English learners is at the median (𝑒𝑛𝑔𝑙𝑖𝑠ℎ = 8.778), the slope of the
line is estimated to be (−1.12 + 0.0012 ∗ 8.778 = −1.12). When the percentage of English
learners is at the 75th percentile (𝑒𝑛𝑔𝑙𝑖𝑠ℎ = 22.97), this line is estimated to be slightly flatter,
with a slope of −1.12 + 0.0012 ∗ 22.97 = −1.09. In other words, for a district with 8.78%
English learners, the estimated effect of a one-unit reduction in the student-teacher ratio is
to increase on average test scores by 1.11 points, but for a district with 23% English learners,
reducing the student-teacher ratio by one unit is predicted to increase test scores on average
by 1.09 points. However, it is important to note from the output of coeftest() that the
estimated coefficient on the interaction term (𝛽3) is not statistically significant at the 10%
level, so we cannot reject the null hypothesis 𝐻0 ∶ 𝛽3 = 0.

3.4 Nonlinear Effects on Test Scores of the Student-Teacher Ratio

This section examines three key questions about test scores and the student-teacher ratio.
First, it explores if reducing the student-teacher ratio affects test scores differently based on
the number of English learners, even when considering economic differences across districts.
Second, it investigates if this effect varies depending on the student-teacher ratio. Lastly,
it aims to determine the expected impact on test scores when the student-teacher ratio de-
creases by two students per teacher, considering both economic factors and potential nonlinear
relationships.

We will answer these questions considering the previously explained nonlinear regression spec-
ifications, extended to include two measures of the economic background of the students: the
percentage of students eligible for a subsidized lunch (𝑙𝑢𝑛𝑐ℎ) and the logarithm of average
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district income (𝑙𝑛(𝑖𝑛𝑐𝑜𝑚𝑒)). The logarithm of district income is used following our previous
empirical analysis, which suggested that this specification captures the nonlinear relationship
between scores and income. We leave out the expenditure per pupil (𝑒𝑥𝑝𝑒𝑛𝑑𝑖𝑡𝑢𝑟𝑒) from our
analysis because including it would suggest that spending changes with the student-teacher
ratio (in other words, we would not be holding expenditures per pupil constant).

We will consider 7 different model specifications:

𝑇𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ𝑖 + 𝛽3 𝑙𝑢𝑛𝑐ℎ𝑖 + 𝑢𝑖.

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝑒𝑛𝑔𝑙𝑖𝑠ℎ𝑖 + 𝛽3 ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) + 𝑢𝑖.

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝐻𝑖𝐸𝐿𝑖 + 𝛽3 (𝐻𝑖𝐸𝐿𝑖 × 𝑆𝑇𝑅𝑖) + 𝑢𝑖.

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝐻𝑖𝐸𝐿𝑖 + 𝛽3 (𝐻𝑖𝐸𝐿𝑖 × 𝑆𝑇𝑅𝑖) + 𝛽4 𝑙𝑢𝑛𝑐ℎ𝑖 + 𝛽5 ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) + 𝑢𝑖.

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝑆𝑇𝑅2
𝑖 + 𝛽3 𝐻𝑖𝐸𝐿𝑖 + 𝛽4 𝑙𝑢𝑛𝑐ℎ𝑖 + 𝛽5 ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) + 𝑢𝑖.

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝑆𝑇𝑅2
𝑖 + 𝛽3 𝑆𝑇𝑅3

𝑖 + 𝛽4 𝐻𝑖𝐸𝐿𝑖 + 𝛽5 (𝐻𝑖𝐸𝐿𝑖 × 𝑆𝑇𝑅𝑖)
+ 𝛽6 (𝐻𝑖𝐸𝐿𝑖 × 𝑆𝑇𝑅2

𝑖 ) + 𝛽7 (𝐻𝑖𝐸𝐿𝑖 × 𝑆𝑇𝑅3
𝑖 ) + 𝛽8 𝑙𝑢𝑛𝑐ℎ𝑖 + 𝛽9 ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) + 𝑢𝑖.

𝑇 𝑒𝑠𝑡𝑆𝑐𝑜𝑟𝑒𝑖 = 𝛽0 + 𝛽1 𝑆𝑇𝑅𝑖 + 𝛽2 𝑆𝑇𝑅2
𝑖 + 𝛽3 𝑆𝑇𝑅3

𝑖 + 𝛽4 𝑒𝑛𝑔𝑙𝑖𝑠ℎ𝑖 + 𝛽5 𝑙𝑢𝑛𝑐ℎ𝑖 + 𝛽6 ln(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) + 𝑢𝑖.

# estimate all models
TS_mod1 <- lm(score ~ STR + english + lunch, data = CASchools)

TS_mod2 <- lm(score ~ STR + english + lunch + log(income), data = CASchools)

TS_mod3 <- lm(score ~ STR + HiEL + HiEL:STR, data = CASchools)

TS_mod4 <- lm(score ~ STR + HiEL + HiEL:STR + lunch + log(income), data = CASchools)

TS_mod5 <- lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + lunch + log(income),
data = CASchools)

TS_mod6 <- lm(score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) +
HiEL:I(STR^3) + lunch + log(income), data = CASchools)

TS_mod7 <- lm(score ~ STR + I(STR^2) + I(STR^3) + english + lunch + log(income),
data = CASchools)

We could use summary() to report the estimates of each model, but stargazer() conveniently
reports the results of all models in a tabular form, which is more practical when comparing
models.
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# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(TS_mod1, type = "HC1"))),

sqrt(diag(vcovHC(TS_mod2, type = "HC1"))),
sqrt(diag(vcovHC(TS_mod3, type = "HC1"))),
sqrt(diag(vcovHC(TS_mod4, type = "HC1"))),
sqrt(diag(vcovHC(TS_mod5, type = "HC1"))),
sqrt(diag(vcovHC(TS_mod6, type = "HC1"))),
sqrt(diag(vcovHC(TS_mod7, type = "HC1"))))

# generate a LaTeX table of regression outputs
stargazer(TS_mod1, TS_mod2, TS_mod3, TS_mod4,

TS_mod5, TS_mod6, TS_mod7,
digits = 3,
type = "text",
header = FALSE,
dep.var.caption = "Dependent Variable: Test Score",
se = rob_se,
model.numbers = FALSE,
column.labels = c("(1)", "(2)", "(3)", "(4)", "(5)", "(6)", "(7)"))

=================================================================================================================================================================================================
Dependent Variable: Test Score

-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------
score

(1) (2) (3) (4) (5) (6) (7)
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
STR -0.998*** -0.734*** -0.968 -0.531 64.339*** 83.702*** 65.285***

(0.270) (0.257) (0.589) (0.342) (24.861) (28.497) (25.259)

english -0.122*** -0.176*** -0.166***
(0.033) (0.034) (0.034)

I(STR2) -3.424*** -4.381*** -3.466***
(1.250) (1.441) (1.271)

I(STR3) 0.059*** 0.075*** 0.060***
(0.021) (0.024) (0.021)

lunch -0.547*** -0.398*** -0.411*** -0.420*** -0.418*** -0.402***
(0.024) (0.033) (0.029) (0.029) (0.029) (0.033)
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log(income) 11.569*** 12.124*** 11.748*** 11.800*** 11.509***
(1.819) (1.798) (1.771) (1.778) (1.806)

HiEL 5.639 5.498 -5.474*** 816.076**
(19.515) (9.795) (1.034) (327.674)

STR:HiEL -1.277 -0.578 -123.282**
(0.967) (0.496) (50.213)

I(STR2):HiEL 6.121**
(2.542)

I(STR3):HiEL -0.101**
(0.043)

Constant 700.150*** 658.552*** 682.246*** 653.666*** 252.050 122.353 244.809
(5.568) (8.642) (11.868) (9.869) (163.634) (185.519) (165.722)

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
Observations 420 420 420 420 420 420 420
R2 0.775 0.796 0.310 0.797 0.801 0.803 0.801
Adjusted R2 0.773 0.794 0.305 0.795 0.798 0.799 0.798
Residual Std. Error 9.080 (df = 416) 8.643 (df = 415) 15.880 (df = 416) 8.629 (df = 414) 8.559 (df = 413) 8.547 (df = 410) 8.568 (df = 413)
F Statistic 476.306*** (df = 3; 416) 405.359*** (df = 4; 415) 62.399*** (df = 3; 416) 325.803*** (df = 5; 414) 277.212*** (df = 6; 413) 185.777*** (df = 9; 410) 276.515*** (df = 6; 413)
=================================================================================================================================================================================================
Note: *p<0.1; **p<0.05; ***p<0.01

What can be concluded from the results presented?

First, we we see the estimated coefficient on 𝑆𝑇𝑅 is highly significant in all models except
from specifications (3) and (4). When we add 𝑙𝑜𝑔(𝑖𝑛𝑐𝑜𝑚𝑒) to model (1) in the second spec-
ification, all coefficients remain highly significant while the coefficient on the new regressor
is also statistically significant at the 1% level. Additionally, the coefficient on 𝑆𝑇𝑅 is now
0.27 higher than in model (1), suggesting a possible mitigation of omitted variable bias when
including 𝑙𝑛(𝑖𝑛𝑐𝑜𝑚𝑒) as regressor. For these reasons, it makes sense to keep this variable in
other models too.

Models (3) and (4) include the interaction term between 𝑆𝑇𝑅 and 𝐻𝑖𝐸𝐿, first without control
variables in the third specification and then controlling for economic factors in the fourth. The
estimated coefficient for the interaction term is not significant at any common level in any of
these models, nor is the coefficient on the dummy variable 𝐻𝑖𝐸𝐿. Hence, despite accounting
for economic factors, we cannot reject the null hypotheses that the impact of the student-
teacher ratio on test scores remains consistent across districts with high and low proportions
of English learning students.
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In regression (5) we have included quadratic and cubic terms for 𝑆𝑇𝑅, while omitting the
interaction term between 𝑆𝑇𝑅 and 𝐻𝑖𝐸𝐿, since it was not significant in specification (4).
The results indicate high levels of significance for these estimated coefficients and we can
therefore assume the presence of a nonlinear effect of the student-teacher ration on test scores.
This could be also verified with an 𝐹 -test of 𝐻0 ∶ 𝛽2 = 𝛽3 = 0.
Regression (6) delves deeper into examining whether the proportion of English learners influ-
ences the student-teacher ratio, incorporating the interaction terms 𝐻𝑖𝐸𝐿 × 𝑆𝑇𝑅, 𝐻𝑖𝐸𝐿 ×
𝑆𝑇𝑅2 and 𝐻𝑖𝐸𝐿×𝑆𝑇𝑅3. Each individual 𝑡-test confirms significant effects. To validate this,
we perform a robust 𝐹 -test to assess 𝐻0 ∶ 𝛽5 = 𝛽6 = 𝛽7 = 0.

# check joint significance of the interaction terms
linearHypothesis(TS_mod6,

c("STR:HiEL=0", "I(STR^2):HiEL=0", "I(STR^3):HiEL=0"),
vcov. = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
STR:HiEL = 0
I(STR^2):HiEL = 0
I(STR^3):HiEL = 0

Model 1: restricted model
Model 2: score ~ STR + I(STR^2) + I(STR^3) + HiEL + HiEL:STR + HiEL:I(STR^2) +

HiEL:I(STR^3) + lunch + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 413
2 410 3 2.1885 0.08882 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With a 𝑝-value of 0.08882 we can just reject the null hypothesis at the 10% level. This provides
tentative evidence that the regression functions are different for districts with high and low
percentages of English learners, but this will be further explored later.

In model (7), we employ a continuous measure for the proportion of English learners instead
of a dummy variable (thus omitting interaction terms). We note minimal alterations in the
coefficient estimates for the remaining regressors. Consequently, we infer that the findings
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observed in model (5) are robust and not influenced significantly by the method used to
measure the percentage of English learners.

For better interpretation, we now plot the nonlinear specifications (2), (5) and (7) along with a
scatterplot of the data, setting all regressors except 𝑆𝑇𝑅 to their sample averages. The plotted
regression functions represent the predicted value of test scores as a function of the student-
teacher ratio, holding fixed other values of the independent variables in the regression.

# scatterplot
plot(CASchools$STR,

CASchools$score,
xlim = c(12, 28),
ylim = c(600, 740),
pch = 20,
col = "gray",
xlab = "Student-Teacher Ratio",
ylab = "Test Score")

# add a legend
legend("top",

legend = c("Linear Regression (2)",
"Cubic Regression (5)",
"Cubic Regression (7)"),

cex = 0.6,
ncol = 3,
lty = c(1, 1, 2),
col = c("blue", "red", "black"))

# data for use with predict()
new_data <- data.frame("STR" = seq(16, 24, 0.05),

"english" = mean(CASchools$english),
"lunch" = mean(CASchools$lunch),
"income" = mean(CASchools$income),
"HiEL" = mean(CASchools$HiEL))

# add estimated regression function for model (2)
fitted <- predict(TS_mod2, newdata = new_data)

lines(new_data$STR,
fitted,
lwd = 1.5,
col = "blue")
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# add estimated regression function for model (5)
fitted <- predict(TS_mod5, newdata = new_data)

lines(new_data$STR,
fitted,
lwd = 1.5,
col = "red")

# add estimated regression function for model (7)
fitted <- predict(TS_mod7, newdata = new_data)

lines(new_data$STR,
fitted,
col = "black",
lwd = 1.5,
lty = 2)
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Cubic regressions (5) and (7) are represented by almost identical lines, and remarkably, all three
estimated regression functions are close to one another. This may indicate that the relation
between test scores and the student-teacher ratio has just a small amount of nonlinearity.

Regression (6) suggested that the cubic regression functions relating test scores and STR
might depend on whether the percentage of English learners in the district is large or small,
but the null was just rejected at the 10% level. We can further explore this by plotting the two
estimated regression functions from this model and assessing the differences. Districts with
low percentages of English learners (𝐻𝑖𝐸𝐿 = 0) will be shown by gray dots, and districts with
𝐻𝑖𝐸𝐿 = 1 by colored dots. We use plot() and points() to color observations depending on
𝐻𝑖𝐸𝐿, and we will make the predictions using the sample averages for all regressors except
for 𝑆𝑇𝑅, just as before.
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# draw scatterplot

# observations with HiEL = 0
plot(CASchools$STR[CASchools$HiEL == 0],

CASchools$score[CASchools$HiEL == 0],
xlim = c(12, 28),
ylim = c(600, 730),
pch = 20,
col = "gray",
xlab = "Student-Teacher Ratio",
ylab = "Test Score")

# observations with HiEL = 1
points(CASchools$STR[CASchools$HiEL == 1],

CASchools$score[CASchools$HiEL == 1],
col = "steelblue",
pch = 20)

# add a legend
legend("top",

legend = c("Regression (6) with HiEL=0", "Regression (6) with HiEL=1"),
cex = 0.7,
ncol = 2,
lty = c(1, 1),
col = c("green", "red"))

# data for use with 'predict()'
new_data <- data.frame("STR" = seq(12, 28, 0.05),

"english" = mean(CASchools$english),
"lunch" = mean(CASchools$lunch),
"income" = mean(CASchools$income),
"HiEL" = 0)

# add estimated regression function for model (6) with HiEL=0
fitted <- predict(TS_mod6, newdata = new_data)

lines(new_data$STR,
fitted,
lwd = 1.5,
col = "green")

# add estimated regression function for model (6) with HiEL=1
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new_data$HiEL <- 1

fitted <- predict(TS_mod6, newdata = new_data)

lines(new_data$STR,
fitted,
lwd = 1.5,
col = "red")
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The plot shows that the difference between both isn’t of practical importance in reality. It’s
a good example of why we need to be careful when understanding nonlinear models. Even
though the two lines on the graph look different, they have almost the same slope between
student-teacher ratios of 17 to 23. Since most of the data falls within this range, we can ignore
any complicated relationships between the fraction of English learners and the student-teacher
ratio. The two regression functions differ for student-teacher ratios below 17. However, we
should be cautious not to draw conclusions beyond what is warranted. Districts with student-
teacher ratios less than 16.5 make up only 6% of the total observations. Therefore, any
discrepancies between the nonlinear regression functions primarily come from differences in
these few districts with extremely low student-teacher ratios.

Additionally, the model is less accurate at the very low and very high ends of the data, since
there aren’t many observations there. This is a common problem with cubic functions - they
can behave strangely at extreme values, as we can see in the graph of 𝑓(𝑥) = 𝑥3.

# Define the range of x values
x <- seq(-10, 10, by = 0.1)

# Calculate the corresponding y values using the cubic function
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y <- x^3

# Plot the cubic function
plot(x, y, type = "l", col = "blue", lwd = 2,

xlab = "x", ylab = "f(x)", main = "Plot of Cubic Function f(x) = x^3")
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All in all, we conclude that the effect on test scores of a change in the student-teacher ratio
does not depend on the percentage of English learners for the range of student-teacher ratios
for which we have the most data.

3.4.1 Conclusions

We can now address the initial questions raised in this section:

First, in the linear models, the impact of the percentage of English learners on changes in test
scores due to variations in the student-teacher ratio is minimal, a conclusion that holds true
even after accounting for students’ economic backgrounds. Although the cubic specification
(6) suggests that the relationship between student-teacher ratio and test scores is influenced
by the proportion of English learners, the magnitude of this influence is not significant.

Second, while controlling for students’ economic backgrounds, we identify nonlinearities in the
association between student-teacher ratio and test scores.

Lastly, under the linear specification (2), a reduction of two students per teacher in the
student-teacher ratio is projected to increase test scores by approximately 1.46 points. As this
model is linear, this effect remains consistent regardless of class size. For instance, assuming a
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student-teacher ratio of 20, the nonlinear model (5) indicates that the reduction in student-
teacher ratio would lead to an increase in test scores by

64.33 ⋅ 18 + 182 ⋅ (−3.42) + 183 ⋅ (0.059) − (64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059)) ≈ 3.3

points. If the ratio was 22, a reduction to 20 leads to a predicted improvement in test scores
of

64.33 ⋅ 20 + 202 ⋅ (−3.42) + 203 ⋅ (0.059) − (64.33 ⋅ 22 + 222 ⋅ (−3.42) + 223 ⋅ (0.059)) ≈ 2.4

points. This suggests that the effect is more evident in smaller classes.
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4 Empirical Applications in Panel Data
Analysis

Welcome to the first empirical application in R! Here you will have the opportunity to bridge
theory with practice by applying the concepts to real-world datasets available in R. This will
help you better understanding the theory and hopefully motivate you to keep conducting your
own applications in R.

Our journey begins always with a brief overview of each dataset, followed by simple analyses
that progressively delve into more advanced applications. Along the way, you will find theory
recaps to ensure you remember the essential concepts required for these applications.

Get ready to dive into the exciting world of empirical methods in R and enjoy the learning
process.

Let’s get started!

4.1 Dataset Description

The dataset Fatalities, contains panel data for traffic fatalities in the United States. Among
others, it contains variables related to traffic fatalities and alcohol, including the number of
traffic fatalities, the type of drunk driving laws and the tax on beer, reporting their values for
each state and each year.

Here we will study how effective various government policies designed to discourage drunk
driving actually are in reducing traffic deaths.

The measure of traffic deaths we use is the fatality rate, which is the annual number of traffic
fatalities per 10,000 individuals within the state’s population. The measure of alcohol taxes
we use is the “real” tax on a case of beer, which is the beer tax, put into 1988 dollars by
adjusting for inflation.

Let’s start by loading the necessary packages and the dataset fatalities

# load the packages and the dataset
library(AER)
library(plm)
data(Fatalities)
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First, we define the dataset as panel data, specifying the variables that should be used as
index (in this case state and year). These will be used to organize the data frame, with each
combination of state and year representing a unique observation in the panel.

# pdata.frame() declares the data as panel data.
Fatalities <- pdata.frame(Fatalities, index = c("state", "year"))

# inspect the structure and obtain the dimension
is.data.frame(Fatalities)

[1] TRUE

dim(Fatalities)

[1] 336 34

We can see the data has been effectively defined as a data frame, with 336 observations of
34 variables. For more detailed information on the variables inside the data frame, we could
additionally call str(Fatalities)

It’s always good to have a quick look at the first few observations. The head() function in
R, by default, shows the first six observations (rows) of a data frame or data set. However,
you can specify a different number of rows to display by providing the desired count as an
argument to the function if needed, like head(your_data_frame, n = 10) to display the first
10 rows.

# list the first few observations
head(Fatalities)

state year spirits unemp income emppop beertax baptist mormon
al-1982 al 1982 1.37 14.4 10544.15 50.69204 1.539379 30.3557 0.32829
al-1983 al 1983 1.36 13.7 10732.80 52.14703 1.788991 30.3336 0.34341
al-1984 al 1984 1.32 11.1 11108.79 54.16809 1.714286 30.3115 0.35924
al-1985 al 1985 1.28 8.9 11332.63 55.27114 1.652542 30.2895 0.37579
al-1986 al 1986 1.23 9.8 11661.51 56.51450 1.609907 30.2674 0.39311
al-1987 al 1987 1.18 7.8 11944.00 57.50988 1.560000 30.2453 0.41123

drinkage dry youngdrivers miles breath jail service fatal nfatal
al-1982 19.00 25.0063 0.211572 7233.887 no no no 839 146
al-1983 19.00 22.9942 0.210768 7836.348 no no no 930 154
al-1984 19.00 24.0426 0.211484 8262.990 no no no 932 165
al-1985 19.67 23.6339 0.211140 8726.917 no no no 882 146
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al-1986 21.00 23.4647 0.213400 8952.854 no no no 1081 172
al-1987 21.00 23.7924 0.215527 9166.302 no no no 1110 181

sfatal fatal1517 nfatal1517 fatal1820 nfatal1820 fatal2124 nfatal2124
al-1982 99 53 9 99 34 120 32
al-1983 98 71 8 108 26 124 35
al-1984 94 49 7 103 25 118 34
al-1985 98 66 9 100 23 114 45
al-1986 119 82 10 120 23 119 29
al-1987 114 94 11 127 31 138 30

afatal pop pop1517 pop1820 pop2124 milestot unempus emppopus
al-1982 309.438 3942002 208999.6 221553.4 290000.1 28516 9.7 57.8
al-1983 341.834 3960008 202000.1 219125.5 290000.2 31032 9.6 57.9
al-1984 304.872 3988992 197000.0 216724.1 288000.2 32961 7.5 59.5
al-1985 276.742 4021008 194999.7 214349.0 284000.3 35091 7.2 60.1
al-1986 360.716 4049994 203999.9 212000.0 263000.3 36259 7.0 60.7
al-1987 368.421 4082999 204999.8 208998.5 258999.8 37426 6.2 61.5

gsp
al-1982 -0.02212476
al-1983 0.04655825
al-1984 0.06279784
al-1985 0.02748997
al-1986 0.03214295
al-1987 0.04897637

# summarize the variables 'state' and 'year'
summary(Fatalities[, c(1, 2)])

state year
al : 7 1982:48
az : 7 1983:48
ar : 7 1984:48
ca : 7 1985:48
co : 7 1986:48
ct : 7 1987:48
(Other):294 1988:48

Notice that the variable state is a factor variable with 48 levels (one for each of the 48
contiguous federal states of the U.S.). The variable year is also a factor variable that has 7
levels identifying the time period when the observation was made. This gives us 7 × 48 = 336
observations in total.
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Since all variables are observed for all entities (states) and over all time periods, the panel is
balanced. If there were missing data for at least one entity in at least one time period we would
call the panel unbalanced.

Let’s start by estimating simple regressions using data for years 1982 and 1988 that model
the relationship between the beer tax (adjusted for 1988 dollars) and the traffic fatality rate,
measured as the number of fatalities per 10000 inhabitants. Afterwards, we plot the data and
add the corresponding estimated regression functions.

# define the fatality rate
Fatalities$fatal_rate <- Fatalities$fatal / Fatalities$pop * 10000

# subset the data
Fatalities1982 <- subset(Fatalities, year == "1982")
Fatalities1988 <- subset(Fatalities, year == "1988")

# estimate simple regression models using 1982 and 1988 data
fatal1982_mod <- lm(fatal_rate ~ beertax, data = Fatalities1982)
fatal1988_mod <- lm(fatal_rate ~ beertax, data = Fatalities1988)

coeftest(fatal1982_mod, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.01038 0.14957 13.4408 <2e-16 ***
beertax 0.14846 0.13261 1.1196 0.2687
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(fatal1988_mod, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.85907 0.11461 16.2205 < 2.2e-16 ***
beertax 0.43875 0.12786 3.4314 0.001279 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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The estimated regression functions are

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = 2.01
(0.15)

+ 0.15
(0.13)

𝐵𝑒𝑒𝑟𝑇𝑎𝑥 (1982 data)

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = 1.86
(0.11)

+ 0.44
(0.13)

𝐵𝑒𝑒𝑟𝑇𝑎𝑥 (1988 data)

# plot the observations and add the estimated regression line for 1982 data
plot(x = as.double(Fatalities1982$beertax), y = as.double(Fatalities1982$fatal_rate),

xlab = "Beer tax (in 1988 dollars)", ylab = "Fatality rate (fatalities per 10000)",
main = "Traffic Fatality Rates and Beer Taxes in 1982", ylim = c(0, 4.5),
pch = 20, col = "steelblue")

abline(fatal1982_mod, lwd = 1.5, col="darkred")
legend("topright",lty=1,col="darkred","Estimated Regression Line")
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# plot observations and add estimated regression line for 1988 data
plot(x = as.double(Fatalities1988$beertax), y = as.double(Fatalities1988$fatal_rate),

xlab = "Beer tax (in 1988 dollars)", ylab = "Fatality rate (fatalities per 10000)",
main = "Traffic Fatality Rates and Beer Taxes in 1988", ylim = c(0, 4.5),
pch = 20, col = "steelblue")

abline(fatal1988_mod, lwd = 1.5,col="darkred") # add the regression line to plot
legend("bottomright",lty=1,col="darkred","Estimated Regression Line") # add legend
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In both plots, each point represents observations of beer tax and fatality rate for a given state
in the respective year. The regression results indicate a positive relationship between the beer
tax and the fatality rate for both years.

The estimated coefficient on beer tax for the 1988 data is almost three times as large as for
the 1982 dataset. This is contrary to our expectations: alcohol taxes are supposed to lower
the rate of traffic fatalities. This is possibly due to omitted variable bias, since none of the
models include any covariates, e.g., economic conditions.

This could be corrected for using a multiple regression approach. However, this cannot account
for omitted unobservable factors that differ from state to state but can be assumed to be
constant over the observation span, e.g., the populations’ attitude towards drunk driving. As
shown in the next section, panel data allow us to hold such factors constant.

4.2 Two Time Periods: “Before and After” Comparisons

Let’s suppose there are only 𝑇 = 2 time periods 𝑡 = 1982, 1988. This allows us to analyze
differences in changes of the fatality rate from year 1982 to 1988. We start by considering the
population regression model:

FatalityRate𝑖𝑡 = 𝛽0 + 𝛽1BeerTax𝑖𝑡 + 𝛽2𝑍𝑖 + 𝑢𝑖𝑡

where the 𝑍𝑖 are state specific characteristics that differ between states but are constant over
time. For 𝑡 = 1982 and 𝑡 = 1988 we have
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𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖,1982 = 𝛽0 + 𝛽1BeerTax𝑖,1982 + 𝛽2𝑍𝑖 + 𝑢𝑖,1982,
𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖,1988 = 𝛽0 + 𝛽1BeerTax𝑖,1988 + 𝛽2𝑍𝑖 + 𝑢𝑖,1988.

We can eliminate the 𝑍𝑖 by regressing the difference in the fatality rate between 1988 and 1982
on the difference in beer tax between those years:

FatalityRate𝑖,1988 − FatalityRate𝑖,1982 = 𝛽1(BeerTax𝑖,1988 − BeerTax𝑖,1982) + 𝑢𝑖,1988 − 𝑢𝑖,1982

This regression model, where the difference in fatality rate between 1988 and 1982 is regressed
on the difference in beer tax between those years, yields an estimate for 𝛽1 that is robust to a
possible bias due to omission of 𝑍𝑖, as these influences are eliminated from the model. Next
we will estimate a regression based on the differenced data and plot the estimated regression
function.

# compute the differences
diff_fatal_rate <- Fatalities1988$fatal_rate - Fatalities1982$fatal_rate
diff_beertax <- Fatalities1988$beertax - Fatalities1982$beertax

# estimate a regression using differenced data
fatal_diff_mod <- lm(diff_fatal_rate ~ diff_beertax)
coeftest(fatal_diff_mod, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.072037 0.065355 -1.1022 0.276091
diff_beertax -1.040973 0.355006 -2.9323 0.005229 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Including the intercept allows for a change in the mean fatality rate in the time between 1982
and 1988 in the absence of a change in the beer tax.

We obtain the OLS estimated regression function

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖1988 − 𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖1982 = 0.072
(−0.065)

− 1.04
(0.36)

(𝐵𝑒𝑒𝑟𝑇𝑎𝑥𝑖1988 −𝐵𝑒𝑒𝑟𝑇𝑎𝑥𝑖1982)
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# plot the differenced data
plot(x = as.double(diff_beertax), y = as.double(diff_fatal_rate),

xlab = "Change in beer tax (in 1988 dollars)",ylab = "Change in fatality rate (fatalities per 10000)",
main = "Changes in Traffic Fatality Rates and Beer Taxes in 1982-1988", cex.main=1,
xlim = c(-0.6, 0.6), ylim = c(-1.5, 1), pch = 20, col = "steelblue")

abline(fatal_diff_mod, lwd = 1.5,col="darkred") # add the regression line to plot
legend("topright",lty=1,col="darkred","Estimated Regression Line") #add legend
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Estimated Regression Line

The estimated coefficient on beer tax is now negative and significantly different from zero at
the 1% significance level. Its interpretation is that raising the beer tax by $1 is associated
with an average decrease of 1.04 fatalities per 10, 000 inhabitants. This is rather large as the
average fatality rate is approximately 2 persons per 10, 000 inhabitants.

# compute mean fatality rate over all states for all time periods
mean(Fatalities$fatal_rate)

[1] 2.040444

The outcome we obtained is likely to be a consequence of omitting factors in the single-year
regression that influence the fatality rate and are correlated with the beer tax and change
over time. The message is that we need to be more careful and control for such factors before
drawing conclusions about the effect of a raise in beer taxes.
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The approach presented in this section discards information for years 1983 to 1987. The fixed
effects method allows us to use data for more than 𝑇 = 2 time periods and enables us to add
control variables to the analysis.

4.3 Fixed Effects Regression

Consider the panel regression model:

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛽2𝑍𝑖 + 𝑢𝑖𝑡 (3.1)

where the 𝑍𝑖 are unobserved time-invariant heterogeneities across the entities 𝑖 = 1,… , 𝑛.
We aim to estimate 𝛽1, the effect on 𝑌𝑖 of a change in 𝑋𝑖, holding constant 𝑍𝑖. Letting
𝛼𝑖 = 𝛽0 + 𝛽2𝑍𝑖, we obtain the model

𝑌𝑖𝑡 = 𝛼𝑖 + 𝛽1𝑋𝑖𝑡 + 𝑢𝑖𝑡 (3.2)

Having individual specific intercepts 𝛼𝑖, 𝑖 = 1,… , 𝑛 , where each of these can be understood
as the fixed effect of entity i.

The Fixed Effects Regression Model is

𝑌𝑖𝑡 = 𝛽1𝑋1,𝑖𝑡 +⋯+ 𝛽𝑘𝑋𝑘,𝑖𝑡 + 𝛼𝑖 + 𝑢𝑖𝑡 (3.3)

with 𝑖 = 1,… , 𝑛 and 𝑡 = 1,… , 𝑇 . The 𝛼𝑖 are entity-specific intercepts that capture hetero-
geneities across entities. An equivalent representation of this model is given by

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋1,𝑖𝑡 +⋯+ 𝛽𝑘𝑋𝑘,𝑖𝑡 + 𝛾2𝐷2𝑖 + 𝛾3𝐷3𝑖 +⋯+ 𝛾𝑛𝐷𝑛𝑖 + 𝑢𝑖𝑡 (3.4)

where the 𝐷2𝑖, 𝐷3𝑖,… ,𝐷𝑛𝑖 are dummy variables.

To estimate the relation between traffic fatality rates and beer taxes, the simple fixed effects
model is

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖𝑡 = 𝛽1𝐵𝑒𝑒𝑟𝑇𝑎𝑥𝑖𝑡 + 𝑆𝑡𝑎𝑡𝑒𝐹𝑖𝑥𝑒𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑢𝑖𝑡 (3.5)

a regression of the traffic fatality rate on beer tax and 48 binary regressors (one for each
federal state). In this model, we are using a fixed effects approach to account for the effect of
each federal state. Including a fixed effect for each state means that we’re estimating separate
intercepts (or constant terms) for each state.
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In R, we can simply use the function lm() to obtain an estimate of 𝛽1.

fatal_fe_lm_mod <- lm(fatal_rate ~ beertax + state - 1, data = Fatalities)

The -1 term tells R to exclude the intercept term that it would normally include by default.
By doing this, we’re essentially saying that we don’t want to estimate an overall intercept
for the model because we are already capturing the state-specific effects. This is a common
practice in fixed effects models to avoid multicollinearity between the state-specific intercepts
and the predictors.

summary(fatal_fe_lm_mod)

Click here to view or hide summary output

::: {.cell}

```{.r .cell-code}
summary(fatal_fe_lm_mod)
```

::: {.cell-output .cell-output-stdout}

```

Call:
lm(formula = fatal_rate ~ beertax + state - 1, data = Fatalities)

Residuals:
Min 1Q Median 3Q Max

-0.58696 -0.08284 -0.00127 0.07955 0.89780

Coefficients:
Estimate Std. Error t value Pr(>|t|)

beertax -0.65587 0.18785 -3.491 0.000556 ***
stateal 3.47763 0.31336 11.098 < 2e-16 ***
stateaz 2.90990 0.09254 31.445 < 2e-16 ***
statear 2.82268 0.13213 21.364 < 2e-16 ***
stateca 1.96816 0.07401 26.594 < 2e-16 ***
stateco 1.99335 0.08037 24.802 < 2e-16 ***
statect 1.61537 0.08391 19.251 < 2e-16 ***
statede 2.17003 0.07746 28.016 < 2e-16 ***
statefl 3.20950 0.22151 14.489 < 2e-16 ***
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statega 4.00223 0.46403 8.625 4.43e-16 ***
stateid 2.80861 0.09877 28.437 < 2e-16 ***
stateil 1.51601 0.07848 19.318 < 2e-16 ***
statein 2.01609 0.08867 22.736 < 2e-16 ***
stateia 1.93370 0.10222 18.918 < 2e-16 ***
stateks 2.25441 0.10863 20.753 < 2e-16 ***
stateky 2.26011 0.08046 28.089 < 2e-16 ***
statela 2.63051 0.16266 16.171 < 2e-16 ***
stateme 2.36968 0.16006 14.805 < 2e-16 ***
statemd 1.77119 0.08246 21.480 < 2e-16 ***
statema 1.36788 0.08648 15.818 < 2e-16 ***
statemi 1.99310 0.11663 17.089 < 2e-16 ***
statemn 1.58042 0.09363 16.880 < 2e-16 ***
statems 3.44855 0.20936 16.472 < 2e-16 ***
statemo 2.18137 0.09252 23.576 < 2e-16 ***
statemt 3.11724 0.09441 33.017 < 2e-16 ***
statene 1.95545 0.10551 18.534 < 2e-16 ***
statenv 2.87686 0.08106 35.492 < 2e-16 ***
statenh 2.22318 0.14114 15.751 < 2e-16 ***
statenj 1.37188 0.07333 18.709 < 2e-16 ***
statenm 3.90401 0.10154 38.449 < 2e-16 ***
stateny 1.29096 0.07563 17.070 < 2e-16 ***
statenc 3.18717 0.25173 12.661 < 2e-16 ***
statend 1.85419 0.10193 18.191 < 2e-16 ***
stateoh 1.80321 0.10193 17.691 < 2e-16 ***
stateok 2.93257 0.18428 15.913 < 2e-16 ***
stateor 2.30963 0.08117 28.453 < 2e-16 ***
statepa 1.71016 0.08648 19.776 < 2e-16 ***
stateri 1.21258 0.07753 15.640 < 2e-16 ***
statesc 4.03480 0.35479 11.372 < 2e-16 ***
statesd 2.47391 0.14121 17.519 < 2e-16 ***
statetn 2.60197 0.09162 28.398 < 2e-16 ***
statetx 2.56016 0.10853 23.589 < 2e-16 ***
stateut 2.31368 0.15453 14.972 < 2e-16 ***
statevt 2.51159 0.13973 17.975 < 2e-16 ***
stateva 2.18745 0.14664 14.917 < 2e-16 ***
statewa 1.81811 0.08233 22.084 < 2e-16 ***
statewv 2.58088 0.10767 23.971 < 2e-16 ***
statewi 1.71836 0.07746 22.185 < 2e-16 ***
statewy 3.24913 0.07233 44.922 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Residual standard error: 0.1899 on 287 degrees of freedom
Multiple R-squared: 0.9931, Adjusted R-squared: 0.992
F-statistic: 847.8 on 49 and 287 DF, p-value: < 2.2e-16
```

:::
:::

It is also possible to estimate 𝛽1 by applying OLS to the demeaned data, that is, to run the
regression

̃𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = 𝛽1 ̃𝐵𝑒𝑒𝑟𝑡𝑇𝑎𝑥𝑖𝑡 + 𝑢𝑖𝑡

# obtain demeaned data
fatal_demeaned <- with(Fatalities,

data.frame(fatal_rate = fatal_rate - ave(fatal_rate, state),
beertax = beertax - ave(beertax, state)))

# estimate the regression
summary(lm(fatal_rate ~ beertax - 1, data = fatal_demeaned))

Call:
lm(formula = fatal_rate ~ beertax - 1, data = fatal_demeaned)

Residuals:
Min 1Q Median 3Q Max

-0.58696 -0.08284 -0.00127 0.07955 0.89780

Coefficients:
Estimate Std. Error t value Pr(>|t|)

beertax -0.6559 0.1739 -3.772 0.000191 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1757 on 335 degrees of freedom
Multiple R-squared: 0.04074, Adjusted R-squared: 0.03788
F-statistic: 14.23 on 1 and 335 DF, p-value: 0.0001913
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The function ave is convenient for computing group averages. We use it to obtain state specific
averages of the fatality rate and the beer tax.

The estimated coefficient is again −0.6559. The estimated regression function is

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = −0.66
(0.17)

𝐵𝑒𝑒𝑟𝑇𝑎𝑥 + 𝑆𝑡𝑎𝑡𝑒𝐹 𝑖𝑥𝑒𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑠 (3.6)

The coefficient on 𝐵𝑒𝑒𝑟𝑇𝑎𝑥 is negative and statistically significant at the 0, 1% level. Its
interpretation is that raising the beer tax by $1 is associated with an average decrease of 0.66
fatalities per 10, 000 people in traffic fatalities, which is still pretty high.

Although including state fixed effects eliminates the risk of a bias due to omitted factors that
vary across states but not over time, we suspect that there are other omitted variables that
vary over time and thus cause a bias.

4.4 Time Fixed Effects

Controlling for variables that are constant across entities but vary over time can be done by
including time fixed effects. If there are only time fixed effects, the fixed effects regression
model becomes

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛿2𝐵2𝑡 +⋯+ 𝛿𝑇𝐵𝑇𝑡 + 𝑢𝑖𝑡

where only 𝑇 − 1 dummies are included (𝐵1 is omitted) since the model includes an intercept.
This model eliminates omitted variable bias caused by excluding unobserved variables that
evolve over time but are constant across entities.

In some applications it is meaningful to include both entity (state) and time fixed effects. The
entity and time fixed effects model is

𝑌𝑖𝑡 = 𝛽0 + 𝛽1𝑋𝑖𝑡 + 𝛾2𝐷2𝑖 +⋯+ 𝛾𝑛𝐷𝑇𝑖 + 𝛿2𝐵2𝑡 +⋯+ 𝛿𝑇𝐵𝑇𝑡 + 𝑢𝑖𝑡

The combined model allows to eliminate bias from unobservables that change over time but
are constant over entities and it controls for factors that differ across entities but are constant
over time. Such models can be estimated using the OLS algorithm that is implemented in
R.

Let’s estimate the combined entity and time fixed effects model of the relation between fatalities
and beer tax,

𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒𝑖𝑡 = 𝛽1𝐵𝑒𝑒𝑟𝑇𝑎𝑥𝑖𝑡 + 𝑆𝑡𝑎𝑡𝑒𝐹𝑖𝑥𝑒𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑇 𝑖𝑚𝑒𝐹𝑖𝑥𝑒𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑢𝑖𝑡
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It is straightforward to estimate this regression with lm(). We just have to adjust the formula
argument by adding the additional regressor year for time fixed effects:

# estimate a combined time and entity fixed effects regression model
fatal_tefe_lm_mod <- lm(fatal_rate ~ beertax + state + year - 1, data = Fatalities)

summary(fatal_tefe_lm_mod)

Click here to view or hide summary output

::: {.cell}

```{.r .cell-code}
summary(fatal_tefe_lm_mod)
```

::: {.cell-output .cell-output-stdout}

```

Call:
lm(formula = fatal_rate ~ beertax + state + year - 1, data = Fatalities)

Residuals:
Min 1Q Median 3Q Max

-0.59556 -0.08096 0.00143 0.08234 0.83883

Coefficients:
Estimate Std. Error t value Pr(>|t|)

beertax -0.63998 0.19738 -3.242 0.00133 **
stateal 3.51137 0.33250 10.560 < 2e-16 ***
stateaz 2.96451 0.09933 29.846 < 2e-16 ***
statear 2.87284 0.14162 20.286 < 2e-16 ***
stateca 2.02618 0.07857 25.787 < 2e-16 ***
stateco 2.04984 0.08594 23.851 < 2e-16 ***
statect 1.67125 0.08989 18.592 < 2e-16 ***
statede 2.22711 0.08264 26.951 < 2e-16 ***
statefl 3.25132 0.23590 13.782 < 2e-16 ***
statega 4.02300 0.49087 8.196 8.92e-15 ***
stateid 2.86242 0.10606 26.990 < 2e-16 ***
stateil 1.57287 0.08380 18.769 < 2e-16 ***
statein 2.07123 0.09512 21.775 < 2e-16 ***
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stateia 1.98709 0.10976 18.103 < 2e-16 ***
stateks 2.30707 0.11663 19.781 < 2e-16 ***
stateky 2.31659 0.08604 26.923 < 2e-16 ***
statela 2.67772 0.17390 15.398 < 2e-16 ***
stateme 2.41713 0.17116 14.122 < 2e-16 ***
statemd 1.82731 0.08828 20.700 < 2e-16 ***
statema 1.42335 0.09272 15.352 < 2e-16 ***
statemi 2.04488 0.12516 16.338 < 2e-16 ***
statemn 1.63488 0.10051 16.266 < 2e-16 ***
statems 3.49146 0.22311 15.649 < 2e-16 ***
statemo 2.23598 0.09931 22.515 < 2e-16 ***
statemt 3.17160 0.10136 31.291 < 2e-16 ***
statene 2.00846 0.11329 17.729 < 2e-16 ***
statenv 2.93322 0.08671 33.827 < 2e-16 ***
statenh 2.27245 0.15116 15.033 < 2e-16 ***
statenj 1.43016 0.07773 18.399 < 2e-16 ***
statenm 3.95748 0.10903 36.296 < 2e-16 ***
stateny 1.34849 0.08051 16.748 < 2e-16 ***
statenc 3.22630 0.26770 12.052 < 2e-16 ***
statend 1.90762 0.10945 17.428 < 2e-16 ***
stateoh 1.85664 0.10945 16.963 < 2e-16 ***
stateok 2.97776 0.19670 15.139 < 2e-16 ***
stateor 2.36597 0.08684 27.244 < 2e-16 ***
statepa 1.76563 0.09272 19.044 < 2e-16 ***
stateri 1.26964 0.08272 15.348 < 2e-16 ***
statesc 4.06496 0.37606 10.809 < 2e-16 ***
statesd 2.52317 0.15123 16.684 < 2e-16 ***
statetn 2.65670 0.09833 27.017 < 2e-16 ***
statetx 2.61282 0.11653 22.423 < 2e-16 ***
stateut 2.36165 0.16532 14.286 < 2e-16 ***
statevt 2.56100 0.14966 17.112 < 2e-16 ***
stateva 2.23618 0.15698 14.245 < 2e-16 ***
statewa 1.87424 0.08813 21.266 < 2e-16 ***
statewv 2.63364 0.11560 22.782 < 2e-16 ***
statewi 1.77545 0.08264 21.485 < 2e-16 ***
statewy 3.30791 0.07641 43.291 < 2e-16 ***
year1983 -0.07990 0.03835 -2.083 0.03813 *
year1984 -0.07242 0.03835 -1.888 0.06001 .
year1985 -0.12398 0.03844 -3.225 0.00141 **
year1986 -0.03786 0.03859 -0.981 0.32731
year1987 -0.05090 0.03897 -1.306 0.19260
year1988 -0.05180 0.03962 -1.307 0.19215
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.1879 on 281 degrees of freedom
Multiple R-squared: 0.9934, Adjusted R-squared: 0.9921
F-statistic: 771.5 on 55 and 281 DF, p-value: < 2.2e-16
```

:::
:::

Before discussing the outcomes we convince ourselves that state and year are of the class
factor

# check the class of 'state' and 'year'
class(Fatalities$state)

[1] "pseries" "factor"

class(Fatalities$year)

[1] "pseries" "factor"

The lm() functions converts factors into dummies automatically. Since we exclude the intercept
by adding -1 to the right-hand side of the regression formula, lm() estimates coefficients for
𝑛 + (𝑇 − 1) = 48 + 6 = 54 binary variables (6 year dummies and 48 state dummies).

The estimated regression function is

̂𝐹𝑎𝑡𝑎𝑙𝑖𝑡𝑦𝑅𝑎𝑡𝑒 = −0.64
(0.20)

𝐵𝑒𝑒𝑟𝑇𝑎𝑥 + 𝑆𝑡𝑎𝑡𝑒𝐸𝑓𝑓𝑒𝑐𝑡𝑠 + 𝑇 𝑖𝑚𝑒𝐹𝑖𝑥𝑒𝑑𝐸𝑓𝑓𝑒𝑐𝑡𝑠 (3.7)

The result is close to the estimated coefficient for the regression model including only entity
fixed effects, which was −0.66. Unsurprisingly, the coefficient is less precisely estimated, as we
observe a slightly superior standard deviation for this new coefficient of −0.64. Nevertheless,
it is still significantly different from zero at 1% level.

We conclude that the estimated relationship between traffic fatalities and the real beer tax is
not affected by omitted variable bias due to factors that are constant either over time or across
states.
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4.5 Driving Laws and Economic Conditions

There are two major sources of omitted variable bias that are not accounted for by all of the
models of the relation between traffic fatalities and beer taxes that we have considered so far:
economic conditions and driving laws.

Fortunately, Fatalities has data on state-specific legal drinking age (drinkage), punishment
(jail, service) and various economic indicators like unemployment rate (unemp) and per
capita income (income). We may use these covariates to extend the preceding analysis.

These covariates are defined as follows:

• unemp: a numeric variable stating the state specific unemployment rate.
• log(income): the logarithm of real per capita income (in 1988 dollars).
• miles: the state average miles per driver.
• drinkage: the state specific minimum legal drinking age.
• drinkagec: a discretized version of drinkage that classifies states into four categories

of minimal drinking age; 18, 19, 20, 21 and older. R denotes this as [18,19), [19,20),
[20,21) and [21,22]. These categories are included as dummy regressors where
[21,22] is chosen as the reference category.

• punish: a dummy variable with levels yes and no that measures if drunk driving is
severely punished by mandatory jail time or mandatory community service (first convic-
tion).

First, we define some relevant variables to include in our following regression models:

# discretize the minimum legal drinking age
Fatalities$drinkagec <- cut(Fatalities$drinkage, breaks = 18:22, include.lowest = TRUE, right = FALSE)

# set minimum drinking age [21, 22] to be the baseline level
Fatalities$drinkagec <- relevel(Fatalities$drinkagec, "[21,22]")

# mandatory jail or community service?
Fatalities$punish <- with(Fatalities, factor(jail == "yes" | service == "yes", labels = c("no", "yes")))

# the set of observations on all variables for 1982 and 1988
fatal_1982_1988 <- Fatalities[with(Fatalities, year == 1982 | year == 1988), ]

Next, we estimate six regression models using plm().

# estimate all seven models
fat_mod1 <- lm(fatal_rate ~ beertax, data = Fatalities)
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fat_mod2 <- plm(fatal_rate ~ beertax + state, data = Fatalities)

fat_mod3 <- plm(fatal_rate ~ beertax + state + year,
index = c("state","year"), model = "within",
effect = "twoways", data = Fatalities)

fat_mod4 <- plm(fatal_rate ~ beertax + state + year + drinkagec
+ punish + miles + unemp + log(income),
index = c("state", "year"), model = "within",
effect = "twoways", data = Fatalities)

fat_mod5 <- plm(fatal_rate ~ beertax + state + year + drinkagec
+ punish + miles,
index = c("state", "year"), model = "within",
effect = "twoways", data = Fatalities)

fat_mod6 <- plm(fatal_rate ~ beertax + year + drinkage
+ punish + miles + unemp + log(income),
index = c("state", "year"), model = "within",
effect = "twoways", data = Fatalities)

We use stargazer() to generate a comprehensive tabular presentation of the results.

#load stargazer package
library(stargazer)

# gather clustered standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(fat_mod1, type = "HC1"))),

sqrt(diag(vcovHC(fat_mod2, type = "HC1"))),
sqrt(diag(vcovHC(fat_mod3, type = "HC1"))),
sqrt(diag(vcovHC(fat_mod4, type = "HC1"))),
sqrt(diag(vcovHC(fat_mod5, type = "HC1"))),
sqrt(diag(vcovHC(fat_mod6, type = "HC1"))))

# generate the table
stargazer(fat_mod1, fat_mod2, fat_mod3, fat_mod4, fat_mod5, fat_mod6,

se = rob_se,
type="html",
omit.stat = "f", df=FALSE)
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<table style="text-align:center"><tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="6"><em>Dependent variable:</em></td></tr>
<tr><td></td><td colspan="6" style="border-bottom: 1px solid black"></td></tr>
<tr><td style="text-align:left"></td><td colspan="6">fatal_rate</td></tr>
<tr><td style="text-align:left"></td><td><em>OLS</em></td><td colspan="5"><em>panel</em></td></tr>
<tr><td style="text-align:left"></td><td><em></em></td><td colspan="5"><em>linear</em></td></tr>
<tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td><td>(5)</td><td>(6)</td></tr>
<tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">beertax</td><td>0.365<sup>***</sup></td><td>-0.656<sup>**</sup></td><td>-0.640<sup>*</sup></td><td>-0.445</td><td>-0.690<sup>**</sup></td><td>-0.456</td></tr>
<tr><td style="text-align:left"></td><td>(0.053)</td><td>(0.289)</td><td>(0.350)</td><td>(0.291)</td><td>(0.345)</td><td>(0.301)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">drinkagec[18,19)</td><td></td><td></td><td></td><td>0.028</td><td>-0.010</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.068)</td><td>(0.081)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">drinkagec[19,20)</td><td></td><td></td><td></td><td>-0.018</td><td>-0.076</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.049)</td><td>(0.066)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">drinkagec[20,21)</td><td></td><td></td><td></td><td>0.032</td><td>-0.100<sup>*</sup></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.050)</td><td>(0.055)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">drinkage</td><td></td><td></td><td></td><td></td><td></td><td>-0.002</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td>(0.021)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">punishyes</td><td></td><td></td><td></td><td>0.038</td><td>0.085</td><td>0.039</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.101)</td><td>(0.109)</td><td>(0.101)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">miles</td><td></td><td></td><td></td><td>0.00001</td><td>0.00002<sup>*</sup></td><td>0.00001</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.00001)</td><td>(0.00001)</td><td>(0.00001)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">unemp</td><td></td><td></td><td></td><td>-0.063<sup>***</sup></td><td></td><td>-0.063<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.013)</td><td></td><td>(0.013)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">log(income)</td><td></td><td></td><td></td><td>1.816<sup>***</sup></td><td></td><td>1.786<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.624)</td><td></td><td>(0.631)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Constant</td><td>1.853<sup>***</sup></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td>(0.047)</td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>336</td><td>336</td><td>336</td><td>335</td><td>335</td><td>335</td></tr>
<tr><td style="text-align:left">R<sup>2</sup></td><td>0.093</td><td>0.041</td><td>0.036</td><td>0.360</td><td>0.066</td><td>0.357</td></tr>
<tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.091</td><td>-0.120</td><td>-0.149</td><td>0.217</td><td>-0.134</td><td>0.219</td></tr>
<tr><td style="text-align:left">Residual Std. Error</td><td>0.544</td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="6" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
</table>
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While columns 2 and 3 recap the results of regressions 3.6 and 3.7, column 1 presents an
estimate of the coefficient of interest in the naive OLS regression of the fatality rate on beer
tax without any fixed effects. There we obtain a positive estimate for the coefficient on beer
tax that is likely to be upward biased.

The sign of the estimate changes as we extend the model by both entity and time fixed effects
in models 2 and 3. Nonetheless, as discussed before, the magnitudes of both estimates may be
too large.

The model specifications 4 to 6 include covariates that shall capture the effect of overall state
economic conditions as well as the legal framework. Nevertheless, considering model 4 as the
baseline specification including covariates, we observe four interesting results:

1. Including these covariates is not leading to a major reduction of the estimated effect of the
beer tax. The coefficient is not significantly different from zero at the 10% level, which means
that it is considered imprecise.

2. According to this regression model, the minimum legal drinking age is not associated with
an effect on traffic fatalities: none of the three dummy variables are significantly different from
zero at any common level of significance. Moreover, an 𝐹 -Test of the joint hypothesis that all
three coefficients are zero does not reject the null hypothesis. The next code chunk shows how
to test this hypothesis:

# test if legal drinking age has no explanatory power
linearHypothesis(fat_mod4,test = "F",

c("drinkagec[18,19)=0", "drinkagec[19,20)=0", "drinkagec[20,21)"),
vcov. = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
drinkagec[18,19) = 0
drinkagec[19,20) = 0
drinkagec[20,21) = 0

Model 1: restricted model
Model 2: fatal_rate ~ beertax + state + year + drinkagec + punish + miles +

unemp + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 276
2 273 3 0.3782 0.7688
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3. There is no statistical evidence indicating an association between punishment for first
offenders and drunk driving: the corresponding coefficient is not significant at the 10% level.

4. The coefficients on the economic variables representing employment rate and income per
capita indicate an statistically significant association between these and traffic fatalities. We
can check that the employment rate and income per capita coefficients are jointly significant
at the 0.1% level.

# test if economic indicators have no explanatory power
linearHypothesis(fat_mod4, test = "F",

c("log(income)", "unemp"), vcov. = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
log(income) = 0
unemp = 0

Model 1: restricted model
Model 2: fatal_rate ~ beertax + state + year + drinkagec + punish + miles +

unemp + log(income)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 275
2 273 2 31.577 4.609e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Model 5 omits the economic factors. The result supports the notion that economic indicators
should remain in the model as the coefficient on beer tax is sensitive to the inclusion of the
latter.

Results for model 6 show that the legal drinking age has little explanatory power and that the
coefficient of interest is not sensitive to changes in the functional form of the relation between
drinking age and traffic fatalities.

4.6 Summary

We have not found statistical evidence to state that severe punishments and an increase the
minimum drinking age could lead to a reduction of traffic fatalities due to drunk driving.
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Nonetheless, there seems to be a negative effect of alcohol taxes on traffic fatalities according
to our model estimate, However, this estimate is not precise and cannot be interpreted as the
causal effect of interest, as there still may be a bias.

The issue is that there may be omitted variables that differ across states and change over time,
and this bias remains even though we use a panel approach that controls for entity specific
and time invariant unobservables.

A powerful method that can be used if common panel regression approaches fail is instrumental
variables regression, which we will see in the next chapters.
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5 Empirical Applications of Binary Regressions

In this chapter we will apply the concepts of binary regressions, those regression models that
aim to explain a limited dependent variable. In particular, regression models where the depen-
dent variable is binary. For this purpose, we will use a data set available in R called HDMA
(Cross-section data on the Home Mortgage Disclosure Act).

5.1 Data Set Description

The data set HMDA provides data related to mortgage applications filed in Boston in 1990.

# load packages and attach the HMDA data
library(AER)
library(stargazer)
data(HMDA)

Let’s start inspecting the first few observations and computing summary statistics.

#first observations
head(HMDA)

deny pirat hirat lvrat chist mhist phist unemp selfemp insurance condomin
1 no 0.221 0.221 0.8000000 5 2 no 3.9 no no no
2 no 0.265 0.265 0.9218750 2 2 no 3.2 no no no
3 no 0.372 0.248 0.9203980 1 2 no 3.2 no no no
4 no 0.320 0.250 0.8604651 1 2 no 4.3 no no no
5 no 0.360 0.350 0.6000000 1 1 no 3.2 no no no
6 no 0.240 0.170 0.5105263 1 1 no 3.9 no no no
afam single hschool

1 no no yes
2 no yes yes
3 no no yes
4 no no yes
5 no no yes
6 no no yes
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#summary statistics
summary(HMDA)

deny pirat hirat lvrat chist
no :2095 Min. :0.0000 Min. :0.0000 Min. :0.0200 1:1353
yes: 285 1st Qu.:0.2800 1st Qu.:0.2140 1st Qu.:0.6527 2: 441

Median :0.3300 Median :0.2600 Median :0.7795 3: 126
Mean :0.3308 Mean :0.2553 Mean :0.7378 4: 77
3rd Qu.:0.3700 3rd Qu.:0.2988 3rd Qu.:0.8685 5: 182
Max. :3.0000 Max. :3.0000 Max. :1.9500 6: 201

mhist phist unemp selfemp insurance condomin
1: 747 no :2205 Min. : 1.800 no :2103 no :2332 no :1694
2:1571 yes: 175 1st Qu.: 3.100 yes: 277 yes: 48 yes: 686
3: 41 Median : 3.200
4: 21 Mean : 3.774

3rd Qu.: 3.900
Max. :10.600

afam single hschool
no :2041 no :1444 no : 39
yes: 339 yes: 936 yes:2341

5.2 Binary Dependent Variable and Linear Probability Model

The variable we are interested in modelling is deny, an indicator for whether an applicant’s
mortgage application has been accepted (deny = no) or denied (deny = yes).

A regressor that ought to have power in explaining whether a mortgage application has been
denied is pirat, the size of the anticipated total monthly loan payments relative to the the
applicant’s income. It is straightforward to translate this into the simple regression model:

𝑑𝑒𝑛𝑦 = 𝛽0 + 𝛽1 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 + 𝑢 (4.1)

We estimate this model just as any other linear regression model using lm(). Before we do
so, the variable deny must be converted to a numeric variable using as.numeric(), as
the function lm() does not accept the dependent variable to be of class factor.
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Note that as.numeric(HMDA$deny) will turn deny = no into deny = 1 and deny = yes into
deny = 2. Instead of these, we would like to obtain the values 0 and 1, what we can achieve
using as.numeric(HMDA$deny)-1.

# convert 'deny' to numeric
HMDA$deny <- as.numeric(HMDA$deny) - 1

# estimate a simple linear probabilty model
denymod1 <- lm(deny ~ pirat, data = HMDA)
denymod1

Call:
lm(formula = deny ~ pirat, data = HMDA)

Coefficients:
(Intercept) pirat

-0.07991 0.60353

Next, we plot the data and the regression line

# plot the data
plot(x = HMDA$pirat, y = HMDA$deny,

main = "Scatterplot Mortgage Application Denial and
the Payment-to-Income Ratio",

xlab = "P/I ratio", ylab = "Deny",
pch = 20, ylim = c(-0.4, 1.4), cex.main = 0.8)

# add horizontal dashed lines and text
abline(h = 1, lty = 2, col = "darkred")
abline(h = 0, lty = 2, col = "darkred")
text(2.5, 0.9, cex = 0.8, "Mortgage denied")
text(2.5, -0.1, cex= 0.8, "Mortgage approved")

# add the estimated regression line
abline(denymod1, lwd = 1.8, col = "steelblue")

According to the estimated model, a payment-to-income ratio of 1 is associated with an ex-
pected probability of mortgage application denial of roughly 50%.

The model indicates that there is a positive relation between the payment-to-income ratio and
the probability of a denied mortgage application. This suggests that individuals with a high
ratio of loan payments to income are associated with a higher chance of being rejected.
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We may use coeftest() to obtain robust standard errors for both coefficient estimates.

# print robust coefficient summary
coeftest(denymod1, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.079910 0.031967 -2.4998 0.01249 *
pirat 0.603535 0.098483 6.1283 1.036e-09 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression line is

𝑑𝑒𝑛𝑦 = −0.080
(0.032)

+ 0.604
(0.098)

𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 (4.2)
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The coefficient on 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 is statistically different from 0 at the 0.1% level. Its estimate
can be interpreted as follows: a 1 percentage point increase in 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 is associated with an
average increase in the probability of a loan denial by 0.604 ⋅ 0.01 = 0.00604 ≈ 0.6 percentage
points.

5.3 Is there Racial Discrimination in the Mortgage Market?

We will now augment the simple model (4.2) by adding an additional regressor: black, which
equals 1 if the applicant is African American and equals 0 otherwise.

Such a specification is the baseline for investigating if there is racial discrimination in the
mortgage market: if being black has a significant (positive) influence on the probability of a
loan denial when we control for factors that allow for an objective assessment of an applicant’s
creditworthiness, this could be an indicator for discrimination.

In this data set, the variable afam indicates whether the applicant is an African American or
not. We will first rename this variable to black for consistency and then we will estimate the
model including this new regressor.

# rename the variable 'afam'
colnames(HMDA)[colnames(HMDA) == "afam"] <- "black"

# estimate the model
denymod2 <- lm(deny ~ pirat + black, data = HMDA)
coeftest(denymod2, vcov. = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.090514 0.033430 -2.7076 0.006826 **
pirat 0.559195 0.103671 5.3939 7.575e-08 ***
blackyes 0.177428 0.025055 7.0815 1.871e-12 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression function is
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𝑑𝑒𝑛𝑦 = −0.091
(0.033)

+ 0.559
(0.104)

𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 + 0.177
(0.025)

𝑏𝑙𝑎𝑐𝑘 (4.3)

The coefficient on black is positive and significantly different from zero at the 0.1% level. The
interpretation is that, holding constant the 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜, being black is associated with an average
increase in the probability of a mortgage application denial by 17.7 percentage points.

This finding could be associated with racial discrimination. However, it might be distorted by
omitted variable bias so discrimination could be a premature conclusion.

5.4 Probit and Logit Regression

The linear probability model has a major flaw: it assumes the conditional probability function
to be linear. This does not restrict 𝑃(𝑌 = 1|𝑋1,… ,𝑋𝑘) to lie between 0 and 1.
We can easily observe this in our previous plot for model (4.2): for 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 = 1.75, the model
predicts the probability of a mortgage application denial to be bigger than 1. For applications
with 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 close to 0, the predicted probability of denial is even negative, so that the
model has no meaningful interpretation here.

From this we can infer the need for a nonlinear function to model the conditional proba-
bility function of a binary dependent variable. Commonly used methods are Probit and Logit
regression.

5.4.1 Probit Regression

Assume that 𝑌 is a binary variable. The model

𝑌 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘 + 𝑢

with

𝑃(𝑌 = 1|𝑋1, 𝑋2 …,𝑋𝑘) = Φ(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘)
is the population Probit model, with multiple regressors 𝑋1, 𝑋2 …,𝑋𝑘 and Φ(⋅) being the
cumulative distribution function (CDF) of a standard normal distribution.

The predicted probability that 𝑌 = 1 given 𝑋1, 𝑋2 …,𝑋𝑘 can be calculated in two steps:

1. Compute 𝑧 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘
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2. Look up Φ(𝑧) by calling pnorm()

𝛽𝑗 is the effect on 𝑧 of a one unit change in regressor 𝑋𝑗, holding constant all other 𝑘 − 1
regressors.

The effect on the predicted probability of a change in a regressor can be computed also in
two steps:

1. Compute the predicted probability of 𝑌 = 1 for two cases:

• Case 1: Using the original values of the regressors (𝑋1, 𝑋2,… ,𝑋𝑘).
• Case 2: Using the modified value of 𝑋1 (𝑋1 + Δ𝑋1) while keeping other regressors

constant.

2. The difference between the predicted probabilities in Case 1 and Case 2 gives the expected
change in the predicted probability of 𝑌 = 1 associated with the change in 𝑋1.

Δ ̂𝑌 = ̂𝑃 (𝑌 = 1|𝑋1 +Δ𝑋1, 𝑋2,… ,𝑋𝑘) − ̂𝑃 (𝑌 = 1|𝑋1, 𝑋2,… ,𝑋𝑘)
Where ̂𝑃 (𝑌 = 1|𝑋1, 𝑋2,… ,𝑋𝑘) represents the predicted probability of 𝑌 = 1 based on the
estimated probit model.

In R, Probit models can be estimated using the function glm() from the package stats. Using
the argument family we specify that we want to use a Probit link function.

We can now estimate a simple Probit model of the probability of a mortgage denial. Since we
have a binary dependent variable, we need to set family = binomial and for this case, we
will set link = "probit".

# estimate the simple probit model
denyprobit <- glm(deny ~ pirat, family = binomial(link = "probit"), data = HMDA)

coeftest(denyprobit, vcov. = vcovHC, type = "HC1")

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.19415 0.18901 -11.6087 < 2.2e-16 ***
pirat 2.96787 0.53698 5.5269 3.259e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Just as in the linear probability model, we find that the relation between the probability of
denial and the payments-to-income ratio is positive and that the corresponding coefficient is
highly significant.

The estimated model is

𝑃 ̂(𝑑𝑒𝑛𝑦|𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜) = Φ(−2.19
(0.19)

+ 2.97
(0.54)

𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜) (4.4)

We can plot this probit model with the following code chunk

# plot data
plot(x = HMDA$pirat, y = HMDA$deny,

main = "Probit Model of the Probability of Denial, Given P/I Ratio",
xlab = "P/I ratio", ylab = "Deny",
pch = 20, ylim = c(-0.4, 1.4), cex.main = 0.85)

# add horizontal dashed lines and text
abline(h = 1, lty = 2, col = "darkred")
abline(h = 0, lty = 2, col = "darkred")
text(2.5, 0.9, cex = 0.8, "Mortgage denied")
text(2.5, -0.1, cex= 0.8, "Mortgage approved")

# add estimated regression line
x <- seq(0, 3, 0.01)
y <- predict(denyprobit, list(pirat = x), type = "response")
lines(x, y, lwd = 1.5, col = "steelblue")

As observed here, the estimated regression function has a “stretched S-shape”. This is typi-
cal for the cumulative distribution function of a continuous random variable with symmetric
probability density function, like that of a normal random variable.

The function is clearly nonlinear and flattens out for large and small values of 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜. The
functional form thus ensures that the predicted conditional probabilities of a denial lie between
0 and 1.
How would the denial probability change if we increase the 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 from 0.3 to 0.4? We can
use predict() and diff() functions to compute the predicted change:

# 1. compute predictions for P/I ratio = 0.3, 0.4
predictions <- predict(denyprobit, newdata = data.frame("pirat" = c(0.3, 0.4)),

type = "response")
predictions
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0.09615344 0.15696777

# 2. Compute difference in probabilities
diff(predictions)

2
0.06081433

According to our model, an increase in the 𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 from 0.3 to 0.4 leads to an average
increase in the probability of denial of 6.1 percentage points.

Let’s now include the variable black in our Probit model to further estimate the effect of race
on the probability of a mortgage application denial.

# estimate the augmented probit model
denyprobit2 <- glm(deny ~ pirat + black, family = binomial(link = "probit"),

data = HMDA)

coeftest(denyprobit2, vcov. = vcovHC, type = "HC1")

z test of coefficients:
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Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.258787 0.176608 -12.7898 < 2.2e-16 ***
pirat 2.741779 0.497673 5.5092 3.605e-08 ***
blackyes 0.708155 0.083091 8.5227 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The coefficients on 𝑃/𝐼, 𝑟𝑎𝑡𝑖𝑜 and 𝑏𝑙𝑎𝑐𝑘 appear to be positive and highly significant.

While their interpretation can be sensitive and challenging, this probit model indicates two
key findings: first, black applicants, on average, have a higher probability of denial than white
applicants, holding the payments-to-income ratio constant; second, applicants with a higher
payments-to-income ratio, regardless of their race, face on average a higher risk of rejection.

The estimated model equation is

𝑃 ̂(𝑑𝑒𝑛𝑦|𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜, 𝑏𝑙𝑎𝑐𝑘) = Φ(−2.26
(0.18)

+ 2.74
(0.50)

𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 + 0.71
(0.08)

𝑏𝑙𝑎𝑐𝑘) (4.5)

How big is the estimated difference in denial probabilities between two hypothetical applicants
with the same payments-to-income ratio? Just like before, we can compute the difference in
probabilities to answer this question according to our estimated model:

# 1. compute predictions with a constant P/I ratio of 0.3
predictions <- predict(denyprobit2,

newdata = data.frame("black" = c("no", "yes"),
"pirat" = c(0.3, 0.3)),

type = "response")
predictions

1 2
0.07546516 0.23327685

# 2. compute difference in probabilities
diff(predictions)

2
0.1578117
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The result indicates that the estimated difference in denial probabilities between a “black”
and a “non-black” applicant, both with a payment-to-income ratio of 0.3, is on average 15.8
percentage points higher for the “black” applicant.

5.4.2 Logit regression

The population Logit regression function is

𝑃(𝑌 = 1|𝑋1, 𝑋2,… ,𝑋𝑘) = 𝐹(𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 +⋯+ 𝛽𝑘𝑋𝑘)

= 1
1 + 𝑒−(𝛽0+𝛽1𝑋1+𝛽2𝑋2+⋯+𝛽𝑘𝑋𝑘)

The idea is similar to the Probit regression except that here, the probability of the dependent
variable 𝑌 being 1 given a set of independent variables 𝑋1, 𝑋2,… ,𝑋𝑘 is modeled using the
cumulative distribution function (CDF) of a standard logistically distributed random
variable:

𝐹(𝑥) = 1
1 + 𝑒−𝑥

As for Probit regression, there is no simple interpretation of the model coefficients and it is
best to consider predicted probabilities or differences in predicted probabilities.

The estimation of the Logit regression model in R is again a straightforward process. However,
for this specific case, we should specify link = "logit":

denylogit <- glm(deny ~ pirat, family = binomial(link = "logit"), data = HMDA)

coeftest(denylogit, vcov. = vcovHC, type = "HC1")

z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.02843 0.35898 -11.2218 < 2.2e-16 ***
pirat 5.88450 1.00015 5.8836 4.014e-09 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated model is

𝑃 ̂(𝑑𝑒𝑛𝑦|𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜) = 𝐹(−4.03
(0.36)

+ 5.88
(1.00)

𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜) (4.6)

We can now plot both estimated models to visualize and compare results:

# plot data
plot(x = HMDA$pirat, y = HMDA$deny,

main = "Probit and Logit Models of the Probability of Denial, Given P/I Ratio",
xlab = "P/I ratio", ylab = "Deny", pch = 20, ylim = c(-0.4, 1.4), cex.main = 0.9)

# add horizontal dashed lines and text
abline(h = 1, lty = 2, col = "darkred")
abline(h = 0, lty = 2, col = "darkred")
text(2.5, 0.9, cex = 0.8, "Mortgage denied")
text(2.5, -0.1, cex= 0.8, "Mortgage approved")

# add estimated regression line of Probit and Logit models
x <- seq(0, 3, 0.01)
y_probit <- predict(denyprobit, list(pirat = x), type = "response")
y_logit <- predict(denylogit, list(pirat = x), type = "response")
lines(x, y_probit, lwd = 1.5, col = "steelblue")
lines(x, y_logit, lwd = 1.5, col = "black", lty = 2)

# add a legend
legend("topleft",horiz = TRUE, legend = c("Probit", "Logit"),

col = c("steelblue", "black"), lty = c(1, 2))

Both models produce very similar estimates of the probability of a mortgage application being
denied based on the applicants’ payment-to-income ratio.

Now we may also extend the Logit model by including the variable black

# estimate a Logit regression with multiple regressors
denylogit2 <- glm(deny ~ pirat + black, family = binomial(link = "logit"),

data = HMDA)

coeftest(denylogit2, vcov. = vcovHC, type = "HC1")
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z test of coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -4.12556 0.34597 -11.9245 < 2.2e-16 ***
pirat 5.37036 0.96376 5.5723 2.514e-08 ***
blackyes 1.27278 0.14616 8.7081 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain

𝑃 ̂(𝑑𝑒𝑛𝑦|𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜, 𝑏𝑙𝑎𝑐𝑘) = 𝐹(−4.13
(0.35)

+ 5.37
(0.96)

𝑃/𝐼 𝑟𝑎𝑡𝑖𝑜 + 1.27
(0.15)

𝑏𝑙𝑎𝑐𝑘) (4.7)

As for the Probit model (4.6) all model coefficients are highly significant and we obtain positive
estimates for the coefficients on P/I ratio and black.

For comparison we compute the predicted probability of denial for two hypothetical applicants
that differ in race and have a P/I ratio of 0.3.

# 1. compute predictions for P/I ratio = 0.3
predictions <- predict(denylogit2,

newdata = data.frame("black" = c("no", "yes"),
"pirat" = c(0.3, 0.3)),

type = "response")
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predictions

1 2
0.07485143 0.22414592

# 2. Compute difference in probabilities
diff(predictions)

2
0.1492945

We find that, according to our model, white applicants with a payment-to-income of 0.3 face
on average a denial probability of only 7.5%, while African Americans with the same payment-
to-income are rejected on average with a probability of 22.4%, which is 14.9 percentage points
higher.

5.5 Comparison of the models

The Probit and the Logit models deliver only approximations to the unknown population
regression function 𝐸(𝑌 |𝑋). It is not obvious how to decide which model to use in practice.

The linear probability model has the clear drawback of not being able to capture the
nonlinear nature of the population regression function and it may predict probabilities to lie
outside the interval [0, 1].
Probit and Logit models are harder to interpret but they capture the nonlinearities better
than the linear approach: both models produce predictions of probabilities that lie inside the
interval [0, 1]. Predictions of all three models are often close to each other.

The best choice usually depends on the specific characteristics of the data, the theory behind
the model relative to the case being studied, and practical considerations like interpretability
and the preferences of the audience for the analysis.

It is often suggested to use the method that is easiest to use in the statistical software of choice.
As we have seen, it is equally easy to estimate Probit and Logit model using R. The choice
between them might come down to other considerations such as the specific distributional
assumptions behind each model (Logit assumes a logistic distribution of the error terms, while
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Probit assumes a normal distribution), the context of the analysis, or the preferences of the
analyst. There is therefore no general recommendation for which method to use.

5.6 Controlling for applicant characteristics & financial variables

Models (11.6) and (11.7) indicate that denial rates are higher for African American appli-
cants holding constant the payment-to-income ratio. Both results could be subject to omitted
variable bias.

In order to obtain a more trustworthy estimate of the effect of being black on the probability
of a mortgage application denial we estimate a linear probability model as well as several Logit
and Probit models, but this time we control for financial variables and additional applicant
characteristics which are likely to influence the probability of denial and differ between black
and white applicants:

• hirat: inhouse expense-to-total-income ratio.
• lvrat: loan-to-value ratio
• chist: consumer credit score
• mhist: mortgage credit score
• phist: public bad credit record
• insurance: denied mortgage insurance (factor)
• selfemp: self-employed (factor)
• single: single (factor)
• hschool: high school diploma (factor)
• unemp: unemployment rate
• condomin: condominium (factor)

For more on variables contained in the HMDA data set use R’s help() function.

Sample averages can be easily reproduced using the functions mean() (as usual for numeric
variables) and prop.table() (for factor variables). For example:

# inhouse expense-to-total-income ratio
mean(HMDA$hirat)

[1] 0.2553461

# self-employed
prop.table(table(HMDA$selfemp))
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no yes
0.8836134 0.1163866

Before estimating the models we transform the loan-to-value ratio (lvrat) into a factor vari-
able, where

𝑙𝑣𝑟𝑎𝑡 =
⎧{
⎨{⎩

low if 𝑙𝑣𝑟𝑎𝑡 < 0.8
medium if 0.8 ≤ 𝑙𝑣𝑟𝑎𝑡 ≤ 0.95
high if 𝑙𝑣𝑟𝑎𝑡 > 0.95

and convert both credit scores to numeric variables.

# define low, medium and high loan-to-value ratio
HMDA$lvrat <- factor(
ifelse(HMDA$lvrat < 0.8, "low",
ifelse(HMDA$lvrat >= 0.8 & HMDA$lvrat <= 0.95, "medium", "high")),
levels = c("low", "medium", "high"))

# convert credit scores to numeric
HMDA$mhist <- as.numeric(HMDA$mhist)
HMDA$chist <- as.numeric(HMDA$chist)

Next, we estimate different models for denial probability

# estimate 6 models for the denial probability
lpm <- lm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist

+ insurance + selfemp, data = HMDA)

logit <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist
+ insurance + selfemp,
family = binomial(link = "logit"),
data = HMDA)

probit1 <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist
+ insurance + selfemp,
family = binomial(link = "probit"),
data = HMDA)

probit2 <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist + phist
+ insurance + selfemp + single + hschool + unemp,
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family = binomial(link = "probit"),
data = HMDA)

probit3 <- glm(deny ~ black + pirat + hirat + lvrat + chist + mhist
+ phist + insurance + selfemp + single + hschool + unemp
+condomin + I(mhist==3) + I(mhist==4) + I(chist==3)
+ I(chist==4) + I(chist==5)+ I(chist==6),
family = binomial(link = "probit"), data = HMDA)

probit4 <- glm(deny ~ black * (pirat + hirat) + lvrat + chist + mhist + phist
+ insurance + selfemp + single + hschool + unemp,
family = binomial(link = "probit"), data = HMDA)

Then we store heteroskedasticity-robust standard errors of the coefficient estimators in a list
which is then used as the argument se in stargazer()

rob_se <- list(sqrt(diag(vcovHC(lpm, type = "HC1"))),
sqrt(diag(vcovHC(logit, type = "HC1"))),
sqrt(diag(vcovHC(probit1, type = "HC1"))),
sqrt(diag(vcovHC(probit2, type = "HC1"))),
sqrt(diag(vcovHC(probit3, type = "HC1"))),
sqrt(diag(vcovHC(probit4, type = "HC1"))))

stargazer(lpm, logit, probit1, probit2, probit3, probit4,
se = rob_se,
type="html",
omit.stat = "f", df=FALSE)

<table style="text-align:center"><tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="6"><em>Dependent variable:</em></td></tr>
<tr><td></td><td colspan="6" style="border-bottom: 1px solid black"></td></tr>
<tr><td style="text-align:left"></td><td colspan="6">deny</td></tr>
<tr><td style="text-align:left"></td><td><em>OLS</em></td><td><em>logistic</em></td><td colspan="4"><em>probit</em></td></tr>
<tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td><td>(5)</td><td>(6)</td></tr>
<tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">blackyes</td><td>0.084<sup>***</sup></td><td>0.688<sup>***</sup></td><td>0.389<sup>***</sup></td><td>0.371<sup>***</sup></td><td>0.363<sup>***</sup></td><td>0.246</td></tr>
<tr><td style="text-align:left"></td><td>(0.023)</td><td>(0.183)</td><td>(0.099)</td><td>(0.100)</td><td>(0.101)</td><td>(0.479)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">pirat</td><td>0.449<sup>***</sup></td><td>4.764<sup>***</sup></td><td>2.442<sup>***</sup></td><td>2.464<sup>***</sup></td><td>2.622<sup>***</sup></td><td>2.572<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.114)</td><td>(1.332)</td><td>(0.673)</td><td>(0.654)</td><td>(0.665)</td><td>(0.728)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">hirat</td><td>-0.048</td><td>-0.109</td><td>-0.185</td><td>-0.302</td><td>-0.502</td><td>-0.538</td></tr>
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<tr><td style="text-align:left"></td><td>(0.110)</td><td>(1.298)</td><td>(0.689)</td><td>(0.689)</td><td>(0.715)</td><td>(0.755)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">lvratmedium</td><td>0.031<sup>**</sup></td><td>0.464<sup>***</sup></td><td>0.214<sup>***</sup></td><td>0.216<sup>***</sup></td><td>0.215<sup>**</sup></td><td>0.216<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.013)</td><td>(0.160)</td><td>(0.082)</td><td>(0.082)</td><td>(0.084)</td><td>(0.083)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">lvrathigh</td><td>0.189<sup>***</sup></td><td>1.495<sup>***</sup></td><td>0.791<sup>***</sup></td><td>0.795<sup>***</sup></td><td>0.836<sup>***</sup></td><td>0.788<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.050)</td><td>(0.325)</td><td>(0.183)</td><td>(0.184)</td><td>(0.185)</td><td>(0.185)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">chist</td><td>0.031<sup>***</sup></td><td>0.290<sup>***</sup></td><td>0.155<sup>***</sup></td><td>0.158<sup>***</sup></td><td>0.344<sup>***</sup></td><td>0.158<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.005)</td><td>(0.039)</td><td>(0.021)</td><td>(0.021)</td><td>(0.108)</td><td>(0.021)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">mhist</td><td>0.021<sup>*</sup></td><td>0.279<sup>**</sup></td><td>0.148<sup>**</sup></td><td>0.110</td><td>0.162</td><td>0.111</td></tr>
<tr><td style="text-align:left"></td><td>(0.011)</td><td>(0.138)</td><td>(0.073)</td><td>(0.076)</td><td>(0.104)</td><td>(0.077)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">phistyes</td><td>0.197<sup>***</sup></td><td>1.226<sup>***</sup></td><td>0.697<sup>***</sup></td><td>0.702<sup>***</sup></td><td>0.717<sup>***</sup></td><td>0.705<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.035)</td><td>(0.203)</td><td>(0.114)</td><td>(0.115)</td><td>(0.116)</td><td>(0.115)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">insuranceyes</td><td>0.702<sup>***</sup></td><td>4.548<sup>***</sup></td><td>2.557<sup>***</sup></td><td>2.585<sup>***</sup></td><td>2.589<sup>***</sup></td><td>2.590<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.045)</td><td>(0.576)</td><td>(0.305)</td><td>(0.299)</td><td>(0.306)</td><td>(0.299)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">selfempyes</td><td>0.060<sup>***</sup></td><td>0.666<sup>***</sup></td><td>0.359<sup>***</sup></td><td>0.346<sup>***</sup></td><td>0.342<sup>***</sup></td><td>0.348<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.021)</td><td>(0.214)</td><td>(0.113)</td><td>(0.116)</td><td>(0.116)</td><td>(0.116)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">singleyes</td><td></td><td></td><td></td><td>0.229<sup>***</sup></td><td>0.230<sup>***</sup></td><td>0.226<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.080)</td><td>(0.086)</td><td>(0.081)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">hschoolyes</td><td></td><td></td><td></td><td>-0.613<sup>***</sup></td><td>-0.604<sup>**</sup></td><td>-0.620<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.229)</td><td>(0.237)</td><td>(0.229)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">unemp</td><td></td><td></td><td></td><td>0.030<sup>*</sup></td><td>0.028</td><td>0.030</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(0.018)</td><td>(0.018)</td><td>(0.018)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">condominyes</td><td></td><td></td><td></td><td></td><td>-0.055</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.096)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">I(mhist == 3)</td><td></td><td></td><td></td><td></td><td>-0.107</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.301)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">I(mhist == 4)</td><td></td><td></td><td></td><td></td><td>-0.383</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.427)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">I(chist == 3)</td><td></td><td></td><td></td><td></td><td>-0.226</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.248)</td><td></td></tr>

93



<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">I(chist == 4)</td><td></td><td></td><td></td><td></td><td>-0.251</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.338)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">I(chist == 5)</td><td></td><td></td><td></td><td></td><td>-0.789<sup>*</sup></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.412)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">I(chist == 6)</td><td></td><td></td><td></td><td></td><td>-0.905<sup>*</sup></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td>(0.515)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">blackyes:pirat</td><td></td><td></td><td></td><td></td><td></td><td>-0.579</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td>(1.550)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">blackyes:hirat</td><td></td><td></td><td></td><td></td><td></td><td>1.232</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td>(1.709)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Constant</td><td>-0.183<sup>***</sup></td><td>-5.707<sup>***</sup></td><td>-3.041<sup>***</sup></td><td>-2.575<sup>***</sup></td><td>-2.896<sup>***</sup></td><td>-2.543<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(0.028)</td><td>(0.484)</td><td>(0.250)</td><td>(0.350)</td><td>(0.404)</td><td>(0.370)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>2,380</td><td>2,380</td><td>2,380</td><td>2,380</td><td>2,380</td><td>2,380</td></tr>
<tr><td style="text-align:left">R<sup>2</sup></td><td>0.266</td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.263</td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Log Likelihood</td><td></td><td>-635.637</td><td>-636.847</td><td>-628.614</td><td>-625.064</td><td>-628.332</td></tr>
<tr><td style="text-align:left">Akaike Inf. Crit.</td><td></td><td>1,293.273</td><td>1,295.694</td><td>1,285.227</td><td>1,292.129</td><td>1,288.664</td></tr>
<tr><td style="text-align:left">Residual Std. Error</td><td>0.279</td><td></td><td></td><td></td><td></td><td></td></tr>
<tr><td colspan="7" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="6" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
</table>

Models (1), (2) and (3) are baseline specifications that include several financial control variables.
They differ only in the way they model the denial probability. Model (1) is a linear probability
model, model (2) is a Logit regression and model (3) uses the Probit approach.

In the linear model (1), the coefficients have direct interpretation. For example:

• An increase in the consumer credit score by 1 unit is estimated to increase the probability
of a loan denial on average by 3.1 percentage points.

• Having a high loan-to-value ratio is detriment for credit approval: the coefficient for a
loan-to-value ratio higher than 0.95 is 0.189 so clients with this property are estimated
to face an almost 19 percentage points larger risk of denial on average than those with
a low loan-to-value ratio, ceteris paribus.
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• The estimated coefficient on the race dummy is 0.084, which indicates the denial proba-
bility for African Americans is estimated to be on average 8.4 percentage points larger
than for white applicants with the same characteristics except for race.

Apart from the inhouse expense-to-total-income ratio, all coefficients are significant in the
linear probability model.

Models (2) and (3) provide similar evidence of racial discrimination in the U.S. mortgage mar-
ket. All coefficients except for the housing expense-to-income ratio (which is not significantly
different from zero) and the mortgage credit score (which is statistically significant at the 5%
level) are significant at the 1% level.

As discussed above, the nonlinearity makes the interpretation of the coefficient estimates
more difficult than for model (1).

In order to make a statement about the effect of being black, we need to compute the estimated
denial probability for two individuals that differ only in race. For the comparison we consider
two individuals that share mean values for all numeric regressors.

For the qualitative variables we assign the property that is most representative for the data at
hand. For example, consider self-employment: we have seen that about 88% of all individuals
in the sample are not self-employed such that we set selfemp = no.

Using this approach, the estimate for the effect on the denial probability of being African
American according to the Logit model (2) would be 4 percentage points. The next code
chunk shows how to apply this approach for models (1) to (6) using R.

# compute regressor values for an average black person
new <- data.frame(
"pirat" = mean(HMDA$pirat),
"hirat" = mean(HMDA$hirat),
"lvrat" = "low",
"chist" = mean(HMDA$chist),
"mhist" = mean(HMDA$mhist),
"phist" = "no",
"insurance" = "no",
"selfemp" = "no",
"black" = c("no", "yes"),
"single" = "no",
"hschool" = "yes",
"unemp" = mean(HMDA$unemp),
"condomin" = "no")

# difference predicted by the LPM (1)
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predictions <- predict(lpm, newdata = new)
diff(predictions)

2
0.08369674

# difference predicted by the logit model (2)
predictions <- predict(logit, newdata = new, type = "response")
diff(predictions)

2
0.04042135

# difference predicted by probit model (3)
predictions <- predict(probit1, newdata = new, type = "response")
diff(predictions)

2
0.05049716

# difference predicted by probit model (4)
predictions <- predict(probit2, newdata = new, type = "response")
diff(predictions)

2
0.03978918

# difference predicted by probit model (5)
predictions <- predict(probit3, newdata = new, type = "response")
diff(predictions)

2
0.04972468

# difference predicted by probit model (6)
predictions <- predict(probit4, newdata = new, type = "response")
diff(predictions)
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2
0.03955893

The estimates of the impact on the denial probability of being black are similar for models
(2) and (3). It is interesting that the magnitude of the estimated effects is much smaller than
for Probit and Logit models that do not control for financial characteristics (see models 4.5
and 4.7). This indicates that these simple models produced biased estimates due to omitted
variables.

Regressions (4) to (6) include different applicant characteristics and credit rating indicator
variables, as well as interactions. However, most of the corresponding coefficients are not
significant and the estimates of the coefficient on black obtained for these models, as well as
the estimated difference in denial probabilities, do not differ much from those obtained for
models (2) and (3).

An interesting question related to racial discrimination can be investigated using the Probit
model (6) where the interactions blackyes:pirat and blackyes:hirat are added to model
(4).

If the coefficient on blackyes:pirat was significantly different from zero, the effect of the
payment-to-income ratio on the denial probability would be different for black and white
applicants.

Similarly, a non-zero coefficient on blackyes:hirat would indicate that loan officers weight
the risk of bankruptcy associated with a high loan-to-value ratio differently for black and white
mortgage applicants. We can test whether these coefficients are jointly significant at the
5% level using an F-Test.

linearHypothesis(probit4,
test = "F",
c("blackyes:pirat=0", "blackyes:hirat=0"),
vcov = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
blackyes:pirat = 0
blackyes:hirat = 0

Model 1: restricted model
Model 2: deny ~ black * (pirat + hirat) + lvrat + chist + mhist + phist +

insurance + selfemp + single + hschool + unemp

Note: Coefficient covariance matrix supplied.
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Res.Df Df F Pr(>F)
1 2366
2 2364 2 0.2473 0.7809

Since 𝑝-value ≈ 0.78 for this test, the null cannot be rejected. There is not enough evidence
to conclude that there is a significant interaction effect between being black and the variables
pirat and hirat when considering the denial outcome.

Nonetheless, when we test whether the coefficients for the main effect of blackyes and the
interaction terms blackyes:pirat and blackyes:hirat are jointly equal to zero at the 5%
level, we obtain:

linearHypothesis(probit4, test = "F",
c("blackyes=0", "blackyes:pirat=0", "blackyes:hirat=0"),
vcov = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
blackyes = 0
blackyes:pirat = 0
blackyes:hirat = 0

Model 1: restricted model
Model 2: deny ~ black * (pirat + hirat) + lvrat + chist + mhist + phist +

insurance + selfemp + single + hschool + unemp

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 2367
2 2364 3 4.7774 0.002534 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

With 𝑝-value ≈ 0.003 we can reject the hypothesis that there is no racial discrimination in
the model. There is significant evidence to suggest that at least one of the coefficients for the
main effect of blackyes or the interaction terms involving blackyes is not equal to zero.

This suggests the presence of racial discrimination in the model, as the inclusion of
blackyes in addition to the interaction terms leads to a significant difference in the model
fit.
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5.7 Summary

Models (1) to (6) provide evidence that there is an effect of being African American on the
probability of mortgage application denial.

In specifications (2) to (5), the effect is estimated to be positive (ranging from 4 to 5 percentage
points) and statistically significant at the 1% level.

While the linear probability model (1) seems to slightly overestimate this positive effect at
8 percentage points, it still can be used as an approximation to an intrinsically nonlinear
relationship.

Probit model (6) delved deeper, revealing the presence of racial discrimination through inter-
action effects between being African American and other variables.
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6 Empirical Applications of Instrumental
Variables Regression

In this chapter we will apply the concepts of Instrumental Variables Regression, which are those
regression models that aim to solve the problem arising when the error term 𝑢 is correlated with
the regressor of interest, and so that the corresponding coefficient is estimated inconsistently.

We have previously addressed the issue of omitted variables bias by adding the omitted vari-
ables to the regression, trying to mitigate the risk of biased estimation of the causal effect
of interest. However, if we don’t have data on the omitted factors, multiple regression is not
sufficient.

The same issue arises when causality runs both from 𝑋 to 𝑌 and from 𝑌 to 𝑋, so that there is
simultaneous causality bias. There will be again an estimation bias that cannot be corrected
for by multiple regression.

Instrumental variables (IV) regression is a general solution to obtain a consistent estima-
tor of the unknown causal coefficients when the regressor 𝑋 is correlated with the error term
𝑢. In this chapter we focus on the IV regression tool called two-stage least squares (TSLS).

6.1 Data Set Description

We will use the data set CigarettesSW which comes with the package AER (Christian Kleiber
and Zeileis 2008). It is a panel data set that contains observations on cigarette consumption
and several economic indicators for all 48 continental federal states of the U.S. from 1985 to
1995.

# load the data set
library(AER)
data("CigarettesSW")

# get an overview
summary(CigarettesSW)
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state year cpi population packs
AL : 2 1985:48 Min. :1.076 Min. : 478447 Min. : 49.27
AR : 2 1995:48 1st Qu.:1.076 1st Qu.: 1622606 1st Qu.: 92.45
AZ : 2 Median :1.300 Median : 3697472 Median :110.16
CA : 2 Mean :1.300 Mean : 5168866 Mean :109.18
CO : 2 3rd Qu.:1.524 3rd Qu.: 5901500 3rd Qu.:123.52
CT : 2 Max. :1.524 Max. :31493524 Max. :197.99
(Other):84

income tax price taxs
Min. : 6887097 Min. :18.00 Min. : 84.97 Min. : 21.27
1st Qu.: 25520384 1st Qu.:31.00 1st Qu.:102.71 1st Qu.: 34.77
Median : 61661644 Median :37.00 Median :137.72 Median : 41.05
Mean : 99878736 Mean :42.68 Mean :143.45 Mean : 48.33
3rd Qu.:127313964 3rd Qu.:50.88 3rd Qu.:176.15 3rd Qu.: 59.48
Max. :771470144 Max. :99.00 Max. :240.85 Max. :112.63

Use ?CigarettesSW for a detailed description of the variables.

6.2 Problem Description

The relation between commodity demand and prices is a fundamental and widely observed
issue in economics. Health economics focuses on how individual health-related behaviors are
influenced by healthcare systems and regulatory policies. Smoking serves as a prime example
in public policy discussions due to its association with various illnesses and negative impacts
on society.

Cigarette consumption could potentially be reduced by increasing taxes on cigarettes. The
question is by how much taxes must be increased to reach a certain reduction in cigarette
consumption.

Elasticity is commonly estimated and used by economists to answer this kind of questions. But
an OLS regression of log quantity on log price cannot be used to estimate the price elasticity
for the demand of cigarettes, since there is simultaneous causality between demand and
supply.

In this case, the effect on demand quantity of a change in price can instead be estimated using
IV regression.
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6.3 The IV Estimator with a Single Regressor and a Single
Instrument

Consider the simple regression model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖, 𝑖 = 1,… , 𝑛 (5.1)

where the error term 𝑢𝑖 is correlated with the regressor 𝑋𝑖 (𝑋 is endogenous) such that the
OLS estimator is inconsistent for the true 𝛽1 (the causal effect of 𝑋 on 𝑌 ). Instrumental
variables estimation uses an additional, “instrumental” variable 𝑍 to isolate that part of 𝑋
that is uncorrelated with 𝑢, to obtain a consistent estimator for 𝛽1.

𝑍 must satisfy two conditions to be a valid instrument:

1. Instrument relevance condition: 𝑋 and its instrument 𝑍 must be correlated: 𝜌𝑍𝑖,𝑋𝑖
≠

0
2. Instrument exogeneity condition: The instrument 𝑍 must not be correlated with the
error term 𝑢: 𝜌𝑍𝑖,𝑢𝑖

= 0.

The Two-Stage Least Squares Estimator

As its name suggests, TSLS proceeds in two stages. In the first stage, the endogenous regressor
𝑋 is decomposed into a problem-free component, uncorrelated with the error term, that is
explained by the instrument 𝑍, and a problematic component that may be correlated with the
error 𝑢𝑖. The second stage uses the problem-free component to estimate 𝛽1.

The first stage regression model is

𝑋𝑖 = 𝜋0 + 𝜋1𝑍𝑖 + 𝜈𝑖
where 𝜋0 +𝜋1𝑍𝑖 is the component of 𝑋𝑖 explained by 𝑍𝑖 and 𝜈𝑖 is the problematic component
that cannot be explained by 𝑍𝑖 and exhibits correlation with 𝑢𝑖.

With the OLS estimates ̂𝜋0 and ̂𝜋1 the predicted values 𝑋𝑖, 𝑖 = 1,… , 𝑛 are obtained. If 𝑍 is a
valid instrument, the predicted 𝑋𝑖 are problem-free so that in the second stage regression, the
OLS regression of 𝑌 on 𝑋, 𝑋 is exogenous.

From the second stage regression we obtain the TSLS estimators ̂𝛽𝑇𝑆𝐿𝑆
0 and ̂𝛽𝑇𝑆𝐿𝑆

1 . For a
single instrument case the TSLS estimator of 𝛽1 is:

̂𝛽𝑇𝑆𝐿𝑆
1 = 𝑠𝑍𝑌

𝑠𝑍𝑋
=

1
𝑛−1 ∑𝑛

𝑖=1(𝑌𝑖 − ̄𝑌 )(𝑍𝑖 − ̄𝑍)
1

𝑛−1 ∑𝑛
𝑖=1(𝑋𝑖 − �̄�)(𝑍𝑖 − ̄𝑍), (5.2)
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which is indeed the ratio of the sample covariance between 𝑍 and 𝑌 to the sample covariance
between 𝑍 and 𝑋.

Assuming 𝑍 meets the requirements of a valid instrument, (5.2) is a consistent estimator for
𝛽1 in (5.1). The Central Limit Theorem (CLT) suggests that as the sample size increases, the
distribution of ̂𝛽𝑇𝑆𝐿𝑆

1 can be closely approximated by a normal distribution. Consequently, we
can use t-statistics and confidence intervals, which can be calculated using certain functions
in R.

For our problem, we are interested in estimating 𝛽1 in

log(𝑄cigarettes
𝑖 ) = 𝛽0 + 𝛽1 log(𝑃 cigarettes

𝑖 ) + 𝑢𝑖 (5.3)

where 𝑄cigarettes
𝑖 is the number of cigarette packs sold per capita (the demand), 𝑃 cigarettes

𝑖 is
the after-tax average real price per pack of cigarettes in state i and 𝑢𝑖 represents other factors
that affect the demand of cigarettes.

The instrumental variable we will use for instrumenting the endogenous regressor log(𝑃 cigarettes
𝑖 )

is 𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥, the portion of taxes on cigarettes arising from the general sales tax, measured in
dollars per pack (in real dollars, deflated by the Consumer Price Index).

Before using TSLS, it is essential to ask whether the two conditions for instrument validity
hold. First, the idea is that 𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥 is a relevant instrument, considering a high sales tax
increases the after-tax sales price.

Since the sales tax does not directly influence the sold quantity, but indirectly through the
price, it is plausible that 𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥 is exogenous. The credibility of this assumption will be
further discussed later, but for now we keep it as a working hypothesis.

We first perform some transformations in order to obtain deflated cross section data for the
year 1995, as we will consider data for the cross section of states in 1995 only. We also compute
the sample correlation between the sales tax and price per pack.

# compute real per capita prices
CigarettesSW$rprice <- with(CigarettesSW, price / cpi)

# compute the sales tax
CigarettesSW$salestax <- with(CigarettesSW, (taxs - tax) / cpi)

# check the correlation between sales tax and price
cor(CigarettesSW$salestax, CigarettesSW$price)
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[1] 0.6141228

# generate a subset for the year 1995
c1995 <- subset(CigarettesSW, year == "1995")

The estimate of approximately 0.614 indicates that salestax and price exhibit positive cor-
relation. However, a correlation analysis like this is not sufficient for checking whether the
instrument is relevant. As mentioned, we will discuss later the issue of checking whether an
instrument is relevant and exogenous.

The first stage regression is

log(𝑃 cigarettes
𝑖 ) = 𝜋0 + 𝜋1𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥𝑖 + 𝜈𝑖

We can estimate this model in R using lm().

# perform the first stage regression
cig_s1 <- lm(log(rprice) ~ salestax, data = c1995)
coeftest(cig_s1, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 4.6165463 0.0289177 159.6444 < 2.2e-16 ***
salestax 0.0307289 0.0048354 6.3549 8.489e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The first stage regression yields:

log( ̂𝑃 cigarettes
𝑖 ) = 4.617

(0.029)
+ 0.031

(0.005)
𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥𝑖

indicating a positive relationship between the price of cigarettes and the sales tax.

How much of the observed variation in log(𝑃 cigarettes
𝑖 ) is explained by the instrument 𝑆𝑎𝑙𝑒𝑠𝑇𝑎𝑥?

This can be answered by looking at the regression’s 𝑅2

# inspect the R^2 of the first stage regression
summary(cig_s1)$r.squared

104



[1] 0.4709961

which states that about 47% of the variation in after tax prices is explained by the variation
of the sales tax across states.

Next, we store log( ̂𝑃 cigarettes
𝑖 ), the fitted values obtained by the first stage regression cig_s1,

in the variable lcigp_pred.

# store the predicted values
lcigp_pred <- cig_s1$fitted.values

Now in the second stage we run the regression of log(𝑄cigarettes
𝑖 ) on log( ̂𝑃 cigarettes

𝑖 ) to obtain
̂𝛽𝑇𝑆𝐿𝑆
0 and ̂𝛽𝑇𝑆𝐿𝑆

1 :

# perform the second stage regression
cig_s2 <- lm(log(c1995$packs) ~ lcigp_pred)
coeftest(cig_s2, vcov = vcovHC)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.71988 1.70304 5.7074 7.932e-07 ***
lcigp_pred -1.08359 0.35563 -3.0469 0.003822 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Thus estimating the model (5.3) using TSLS yields

̂log(𝑄cigarettes
𝑖 ) = 9.72

(1.70)
− 1.08

(0.36)
log(𝑃 cigarettes

𝑖 ) (5.4)

This estimated regression function would be written using the regressor in the second stage,
the predicted value log( ̂𝑃 cigarettes

𝑖 ). It is, however, conventional and more convenient simply to
report the estimated regression function with log(𝑃 cigarettes

𝑖 ) rather than log( ̂𝑃 cigarettes
𝑖 ).

Instead of manually performing TSLS in steps, we can use the function ivreg() from the AER
package in R to compute the TSLS estimators in just one line of code. It is coded similarly
as lm(). Instruments can be included in the standard regression formula by separating the
model equation from the instruments using a vertical bar.

For our regression of interest the correct formula would be log(packs) ~ log(rprice) |
salestax
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# perform TSLS using 'ivreg()'
cig_ivreg <- ivreg(log(packs) ~ log(rprice) | salestax, data = c1995)

coeftest(cig_ivreg, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.71988 1.52832 6.3598 8.346e-08 ***
log(rprice) -1.08359 0.31892 -3.3977 0.001411 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We appreciate the same coefficient estimates for both approaches, although the latter standard
errors differ from those previously computed with the manual approach in two steps. This is
because the standard errors reported for the second-stage regression using lm() are invalid,
as they do not account for the use of predictions from the first-stage regression as regressors
in the second-stage regression.

Contrary to this, ivreg() performs the necessary adjustment automatically. Taking this
into consideration together with the efficiency of the procedure, and although the step-by-
step computation has been shown for demonstrating the mechanics of the procedure, it is
recommended to use ivreg() function when estimating TSLS.

Additionally, it is important to compute heteroskedasticity-robust standard errors using
vcovHC(), just like in multiple regression.

The TSLS estimate ̂𝛽𝑇𝑆𝐿𝑆
1 of −1.08 suggests that the demand for cigarettes is actually elastic.

Its interpretation is that an increase in the price of 1% is estimated to reduce consumption on
average by approximately 1.08%.

Recalling the discussion of instrument exogeneity, perhaps this estimate should not yet be
taken too seriously. Even though the elasticity was estimated using an instrumental variable,
there might still be omitted variables that are correlated with the sales tax per pack. A
multiple IV regression would be more appropriate to mitigate that risk.

6.4 Multiple IV Regression: The General IV Regression Model

The General Instrumental Variables Regression Model and Terminology

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 +…+ 𝛽𝑘𝑋𝑘𝑖 + 𝛽𝑘+1𝑊1𝑖 +…+ 𝛽𝑘+𝑟𝑊𝑟𝑖 + 𝑢𝑖 (5.5)
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with 𝑖 = 1,… , 𝑛 is the general instrumental variables regression model where:

• 𝑌𝑖 is the dependent variable,

• 𝛽0,… , 𝛽𝑘+1 are 1 + 𝑘 + 𝑟 unknown regression coefficients,

• 𝑋1𝑖,… ,𝑋𝑘𝑖 are 𝑘 endogenous regressors,

• 𝑊1𝑖,… ,𝑊𝑟𝑖 are 𝑟 exogenous regressors, which are uncorrelated with 𝑢𝑖,

• 𝑢𝑖 is the error term,

• 𝑍1𝑖,… , 𝑍𝑚𝑖 are 𝑚 instrumental variables.

The coefficients are overidentified if 𝑚 > 𝑘, they are underidentified if 𝑚 < 𝑘, and they
are exactly identified when 𝑚 = 𝑘. Estimation of the IV regression model requires exact
identification or overidentification.

TSLS in the General IV Model

First-stage regression(s): Regress each of the endogenous variables (𝑋1𝑖,… ,𝑋𝑘𝑖) on all
instrumental variables (𝑍1𝑖,… , 𝑍𝑚𝑖), all exogenous variables (𝑊1𝑖,… ,𝑊𝑟𝑖) and an intercept.
Compute the fitted values (�̂�1𝑖,… , �̂�𝑘𝑖).
Second-stage regression: Regress the dependent variable on the predicted values of
all endogenous regressors, all exogenous variables and an intercept using OLS. This gives
̂𝛽𝑇𝑆𝐿𝑆
0 ,… , ̂𝛽𝑇𝑆𝐿𝑆

𝑘+𝑟 , the TSLS estimates of the model coefficients.

The IV Regression Assumptions

1. 𝐸(𝑢𝑖|𝑊1𝑖,… ,𝑊𝑟𝑖) = 0
2. (𝑋1𝑖,… ,𝑋𝑘𝑖,𝑊1𝑖,… ,𝑊𝑟𝑖, 𝑍1𝑖,… , 𝑍𝑚𝑖) are i.i.d. draws from their joint distribution.

3. All variables have nonzero finite fourth moments, i.e., outliers are unlikely.

4. The 𝑍s are valid instruments

Two Conditions For Valid Instruments

For a set of 𝑚 instruments 𝑍1𝑖,… , 𝑍𝑚𝑖 to be valid, they must meet two conditions:

1. Instrument Relevance
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If there are 𝑘 endogenous variables, 𝑟 exogenous variables and 𝑚 ≥ 𝑘 instruments 𝑍, and
�̂�∗

1𝑖,… , �̂�∗
𝑘𝑖 are the predicted values from the 𝑘 population first stage regressions, it must

hold that (�̂�∗
1𝑖,… , �̂�∗

𝑘𝑖,𝑊1𝑖,… ,𝑊𝑟𝑖, 1) are not perfectly multicollinear. 1 denotes the constant
regressor which equals 1 for all observations.

If there is only one endogenous regressor 𝑋𝑖, there must be at least one non-zero coefficient
on the 𝑍 and the 𝑊 in the population regression for this condition to be valid. If all of the
coefficients are zero, all the �̂�∗

𝑖 are just the mean of 𝑋 such that there is perfect multicollinear-
ity.

2. Instrument Exogeneity

All 𝑚 instruments must be uncorrelated with the error term: 𝜌𝑍1𝑖,𝑢𝑖
= 0,… , 𝜌𝑍𝑚𝑖,𝑢𝑖

= 0

Employing TSLS functions in R such as ivreg() becomes more advantageous when dealing
with a larger set of potentially endogenous regressors and instruments. It is straightforward,
but there are, however, some specifications in correctly coding the regression formula.

Let’s imagine we would like to estimate the model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3𝑊1𝑖 + 𝑢𝑖

where 𝑋1𝑖 and 𝑋2𝑖 are endogenous regressors that shall be instrumented by 𝑍1𝑖, 𝑍2𝑖 and 𝑍3𝑖,
and 𝑊1𝑖 is an exogenous regressor.

The corresponding data is available in a data.frame with column names y, x1, x2, w1,
z1, z2 and z3.

While it might be tempting to specify the argument formula in the call of ivreg() as y ~ x1
+ x2 + w1 | z1 + z2 + z3 , this is wrong. It is necessary to list all exogenous variables as
instruments too, that is joining them by +’s on the right of the vertical bar: y ~ x1 + x2 +
w1 | w1 + z1 + z2 + z3 where w1 is “instrumenting itself”.

See ?ivreg for the documentation of the function, where this is explained.

If we have a large number of exogenous variables, it might be convenient to provide an update
formula with a . right after the | (this includes all variables except for the dependent variable)
and to exclude all endogenous variables using a -.

For example, if there is one exogenous regressor w1 and one endogenous regressor x1 with
instrument z1, the corresponding formula would be y ~ w1 + x1 | w1 + z1, which is equiv-
alent to y ~ w1 + x1 | . - x1 + z1.

Application to the Demand for Cigarettes

108



As explained, although our previous regression function log(𝑄cigarettes
𝑖 ) = 9.72 −

1.08 log(𝑃 cigarettes
𝑖 ) was estimated using IV regression, it is plausible that this estimate

is biased, as the TSLS estimator is inconsistent for the true 𝛽1 if the instrument (the real
sales tax per pack) correlates with the error term.

There might still be omitted variables that are correlated with the sales tax per pack, such
as income. States with higher incomes may rely less on sales tax and more on income tax to
fund their state government. Additionally, the demand for cigarettes is likely influenced by
income. Therefore, we aim to reevaluate our demand equation by incorporating income as a
control variable:

log(𝑄cigarettes
𝑖 ) = 𝛽0 + 𝛽1 log(𝑃 cigarettes

𝑖 ) + 𝛽2 log(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) + 𝑢𝑖 (5.6)

Before estimating (5.6) using ivreg() we define income as real per capita income rincome,
we append it to the data set CigarettesSW and we create a subset again for the year 1995.
Then we estimate the model following the instructions previously explained.

# add rincome to the dataset and create subset for 1995
CigarettesSW$rincome <- with(CigarettesSW, income / population / cpi)
c1995 <- subset(CigarettesSW, year == "1995")

# estimate the model
cig_ivreg2 <- ivreg(log(packs) ~ log(rprice) + log(rincome) | log(rincome) +

salestax, data = c1995)
coeftest(cig_ivreg2, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.43066 1.25939 7.4883 1.935e-09 ***
log(rprice) -1.14338 0.37230 -3.0711 0.003611 **
log(rincome) 0.21452 0.31175 0.6881 0.494917
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain

log(𝑄cigarettes
𝑖 ) = 9.43

(1.26)
− 1.14

(0.37)
log(𝑃 cigarettes

𝑖 ) + 0.21
(0.31)

log(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) (5.7)

We can now add the cigarette-specific taxes (𝑐𝑖𝑔𝑡𝑎𝑥𝑖) as a further instrumental variable and
estimate again using TSLS.
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# add cigtax to the data set
CigarettesSW$cigtax <- with(CigarettesSW, tax/cpi)
c1995 <- subset(CigarettesSW, year == "1995")

# estimate the model
cig_ivreg3 <- ivreg(log(packs) ~ log(rprice) + log(rincome) |

log(rincome) + salestax + cigtax, data = c1995)
coeftest(cig_ivreg3, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.89496 0.95922 10.3157 1.947e-13 ***
log(rprice) -1.27742 0.24961 -5.1177 6.211e-06 ***
log(rincome) 0.28040 0.25389 1.1044 0.2753
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

If we use the instruments 𝑠𝑎𝑙𝑒𝑠𝑡𝑎𝑥𝑖 and 𝑐𝑖𝑔𝑡𝑎𝑥𝑖 we would have 2 instruments (𝑚 = 2) and
𝑘 = 1 so the coefficient on the endogenous regressor log(𝑃 cigarettes

𝑖 ) is now overidentified.

The new TSLS estimate of (5.6) with two instruments is

log(𝑄cigarettes
𝑖 ) = 9.89

(0.96)
− 1.28

(0.25)
log(𝑃 cigarettes

𝑖 ) + 0.28
(0.25)

log(𝑖𝑛𝑐𝑜𝑚𝑒𝑖) (5.8)

When we compare the estimates from models (5.7) and (5.8), we observe smaller standard
errors in (5.8).
The standard error of the estimated price elasticity is smaller by one-third in this equation
(0.25 versus 0.37). The reason is that more information is being used in this estimation: using
two instruments explains more of the variation in cigarette prices than just one.

If the instruments are valid, which is something essential to be checked, (5.8) would be con-
sidered more reliable.

6.5 Instrument Validity

If the general sales tax and the cigarette-specific tax are not valid instruments, TSLS becomes
inadequate for estimating the previously discussed demand elasticity for cigarettes. Although
both variables are likely relevant, their exogeneity remains a separate issue.
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Stock and Watson (2020) argue that cigarette-specific taxes could be endogenous due to state-
specific historical factors, such as the economic significance of tobacco farming and cigarette
production industries, which may advocate for lower cigarette-specific taxes.

Given the plausibility that states reliant on tobacco cultivation have higher smoking rates,
this introduces endogeneity into cigarette-specific taxes. While incorporating data on the
scale of the tobacco and cigarette industry into regression analysis could potentially address
this concern, such data is unavailable.

Given that the role of the tobacco and cigarette industry varies across states but remains
consistent over time, we will utilize the panel structure of CigarettesSW.

As outlined in the panel data chapter, conducting regressions based on data changes between
two time periods eradicates state-specific and time-invariant effects. Our focus is on estimating
the long-term elasticity of cigarette demand, thus we will examine changes in variables between
1985 and 1995.

Consequently, the model to be estimated via TSLS, employing the general sales tax and
cigarette-specific sales tax as instruments, is as follows:

log(𝑄cigarettes
𝑖,1995 ) − log(𝑄cigarettes

𝑖,1985 ) = 𝛽0 + 𝛽1 [log(𝑃 cigarettes
𝑖,1995 ) − log(𝑃 cigarettes

𝑖,1985 )] (6.1)
+ 𝛽2 [log(income𝑖,1995) − log(income𝑖,1985)] + 𝑢𝑖 (5.9)

We first create differences from 1985 to 1995 for the dependent variable, the regressors and
both instruments:

# subset data for year 1985
c1985 <- subset(CigarettesSW, year == "1985")

# define differences in variables
packsdiff <- log(c1995$packs) - log(c1985$packs)

pricediff <- log(c1995$price/c1995$cpi) - log(c1985$price/c1985$cpi)

incomediff <- log(c1995$income/c1995$population/c1995$cpi) -
log(c1985$income/c1985$population/c1985$cpi)

salestaxdiff <- (c1995$taxs - c1995$tax)/c1995$cpi -
(c1985$taxs - c1985$tax)/c1985$cpi

cigtaxdiff <- c1995$tax/c1995$cpi - c1985$tax/c1985$cpi

We now estimate three different IV regressions of (5.9) using ivreg():
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1. TSLS using just the difference in the sales taxes between 1985 and 1995 as instrument.

2. TSLS using just the difference in the cigarette-specific sales taxes 1985 and 1995 as
instrument.

3. TSLS using both the difference in the sales taxes 1985 and 1995 and the difference in
the cigarette-specific sales taxes 1985 and 1995 as instruments.

# estimate the three models
cig_ivreg_diff1 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff +

salestaxdiff)

cig_ivreg_diff2 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff +
cigtaxdiff)

cig_ivreg_diff3 <- ivreg(packsdiff ~ pricediff + incomediff | incomediff +
salestaxdiff + cigtaxdiff)

To obtain robust coefficient summaries for all models we use coeftest() together with
vcovHC()

# robust coefficient summary for 1.
coeftest(cig_ivreg_diff1, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.117962 0.068217 -1.7292 0.09062 .
pricediff -0.938014 0.207502 -4.5205 4.454e-05 ***
incomediff 0.525970 0.339494 1.5493 0.12832
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# robust coefficient summary for 2.
coeftest(cig_ivreg_diff2, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.017049 0.067217 -0.2536 0.8009
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pricediff -1.342515 0.228661 -5.8712 4.848e-07 ***
incomediff 0.428146 0.298718 1.4333 0.1587
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# robust coefficient summary for 3.
coeftest(cig_ivreg_diff3, vcov = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.052003 0.062488 -0.8322 0.4097
pricediff -1.202403 0.196943 -6.1053 2.178e-07 ***
incomediff 0.462030 0.309341 1.4936 0.1423
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can now present a tabulated summary of the estimation results with stargazer() (Hlavac
2022):

# load stargazer
library(stargazer)

# gather robust standard errors in a list
rob_se <- list(sqrt(diag(vcovHC(cig_ivreg_diff1, type = "HC1"))),

sqrt(diag(vcovHC(cig_ivreg_diff2, type = "HC1"))),
sqrt(diag(vcovHC(cig_ivreg_diff3, type = "HC1"))))

# generate table
stargazer(cig_ivreg_diff1, cig_ivreg_diff2, cig_ivreg_diff3,
se = rob_se,
type="html",
omit.stat = "f", df=FALSE)

<table style="text-align:center"><tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="3"><em>Dependent variable:</em></td></tr>
<tr><td></td><td colspan="3" style="border-bottom: 1px solid black"></td></tr>
<tr><td style="text-align:left"></td><td colspan="3">packsdiff</td></tr>
<tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td></tr>
<tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">pricediff</td><td>-0.938<sup>***</sup></td><td>-1.343<sup>***</sup></td><td>-1.202<sup>***</sup></td></tr>
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<tr><td style="text-align:left"></td><td>(0.208)</td><td>(0.229)</td><td>(0.197)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">incomediff</td><td>0.526</td><td>0.428</td><td>0.462</td></tr>
<tr><td style="text-align:left"></td><td>(0.339)</td><td>(0.299)</td><td>(0.309)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Constant</td><td>-0.118<sup>*</sup></td><td>-0.017</td><td>-0.052</td></tr>
<tr><td style="text-align:left"></td><td>(0.068)</td><td>(0.067)</td><td>(0.062)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td></tr>
<tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>48</td><td>48</td><td>48</td></tr>
<tr><td style="text-align:left">R<sup>2</sup></td><td>0.550</td><td>0.520</td><td>0.547</td></tr>
<tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.530</td><td>0.498</td><td>0.526</td></tr>
<tr><td style="text-align:left">Residual Std. Error</td><td>0.091</td><td>0.094</td><td>0.091</td></tr>
<tr><td colspan="4" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="3" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
</table>

In the table we observe different negative estimates for the coefficient on pricediff, all of
them highly significant. How should we select the one to trust? This depends on the validity
of the instruments employed. It would be useful to check for weak instruments.

6.5.1 Checking for Weak Instruments

Instruments that poorly explain changes in the endogenous regressor 𝑋 are labeled as weak
instruments. These weak instruments can lead to inaccurate estimates of the coefficient on
the endogenous regressor.

Let’s simplify this concept by considering a scenario with only one endogenous regressor, 𝑋,
and 𝑚 instruments denoted as 𝑍1,… , 𝑍𝑚. If, in the population first-stage regression of a TSLS
estimation, the coefficients for all instruments are zero, it implies that these instruments fail
to explain any variation in 𝑋.

While encountering such a situation in practice is unlikely, there is a simple rule of thumb
available for the most common situation in practice, the case of a single endogenous regressor.

Rule of Thumb for Checking for Weak Instruments

Compute the 𝐹 -statistic which corresponds to the hypothesis that the coefficients on 𝑍1,… , 𝑍𝑚
are all zero in the first-stage regression. If the 𝐹 -statistic is less than 10, the instruments are
weak, in which case the TSLS estimator is biased (also in large samples) and TSLS 𝑡-statistics
and confidence intervals are unreliable.
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In R this would be implemented by running the first-stage regression using lm() and computing
the heteroskedasticity-robust 𝐹 -statistic by means of linearHypothesis(). Let’s compute
this for all three models:

# first-stage regressions
mod_relevance1 <- lm(pricediff ~ salestaxdiff + incomediff)
mod_relevance2 <- lm(pricediff ~ cigtaxdiff + incomediff)
mod_relevance3 <- lm(pricediff ~ incomediff + salestaxdiff + cigtaxdiff)

# check instrument relevance for model (1)
linearHypothesis(mod_relevance1,

"salestaxdiff = 0",
vcov = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
salestaxdiff = 0

Model 1: restricted model
Model 2: pricediff ~ salestaxdiff + incomediff

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 46
2 45 1 28.445 3.009e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# check instrument relevance for model (2)
linearHypothesis(mod_relevance2,

"cigtaxdiff = 0",
vcov = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
cigtaxdiff = 0

Model 1: restricted model
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Model 2: pricediff ~ cigtaxdiff + incomediff

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 46
2 45 1 98.034 7.09e-13 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

# check instrument relevance for model (3)
linearHypothesis(mod_relevance3,

c("salestaxdiff = 0", "cigtaxdiff = 0"),
vcov = vcovHC, type = "HC1")

Linear hypothesis test

Hypothesis:
salestaxdiff = 0
cigtaxdiff = 0

Model 1: restricted model
Model 2: pricediff ~ incomediff + salestaxdiff + cigtaxdiff

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 46
2 44 2 76.916 4.339e-15 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

When coefficients are overidentified (𝑚 > 𝑘), like in our third model, we can apply the overi-
dentifying restrictions test (also called the 𝐽 -test), which is an approach to test the hy-
pothesis that additional instruments are exogenous.

𝐽-Statistic / Overidentifying Restrictions Test

Take �̂�𝑇𝑆𝐿𝑆
𝑖 , 𝑖 = 1… , 𝑛, the residuals from TSLS estimation of the general IV regression model

(5.5), and run the OLS regression to estimate the coefficients in

�̂�TSL𝑆𝑖
= 𝛿0 + 𝛿1𝑍1𝑖 +…+ 𝛿𝑚𝑍𝑚𝑖 + 𝛿𝑚+1𝑊1𝑖 +…+ 𝛿𝑚+𝑟𝑊𝑟𝑖 + 𝑒𝑖 (5.10)
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where 𝑒𝑖 is the regression error term. Now test the joint hypothesis

𝐻0 ∶ 𝛿1 = 0,… , 𝛿 = 0
that states that all instruments are exogenous. Let 𝐹 denote the homoskedasticity-only 𝐹 -
statistic testing the null hypothesis. The overidentifying restrictions test statistic is then

𝐽 = 𝑚𝐹
also called the 𝐽 -statistic. Under the null hypothesis that all the instruments are exogenous,
if 𝑒𝑖 is homoskedastic, in large samples

𝐽 ∼ 𝜒2
𝑚−𝑘

where 𝑚− 𝑘 is the degree of overidentification, or in other words, the number of instruments
minus the number of endogenous regressors.

To conduct the overidentifying restrictions test for model three, which is the only model
where the coefficient on the difference in log prices is overidentified (𝑚 = 2, 𝑘 = 1), allowing
computation of the 𝐽 -statistic, we proceed as follows:

1. We use the residuals stored in cig_ivreg_diff3 and regress them on both instruments
and the presumably exogenous regressor incomediff.

2. Once more, we employ linearHypothesis() to examine whether the coefficients on
both instruments are zero, a prerequisite for fulfilling the exogeneity assumption. It’s
important to note that we specify test = "Chisq" to obtain a chi-squared distributed
test statistic instead of an 𝐹 -statistic.

# compute the J-statistic
cig_iv_OR <- lm(residuals(cig_ivreg_diff3) ~ incomediff + salestaxdiff + cigtaxdiff)

cig_OR_test <- linearHypothesis(cig_iv_OR,
c("salestaxdiff = 0", "cigtaxdiff = 0"),
test = "Chisq")

cig_OR_test
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Linear hypothesis test

Hypothesis:
salestaxdiff = 0
cigtaxdiff = 0

Model 1: restricted model
Model 2: residuals(cig_ivreg_diff3) ~ incomediff + salestaxdiff + cigtaxdiff

Res.Df RSS Df Sum of Sq Chisq Pr(>Chisq)
1 46 0.37472
2 44 0.33695 2 0.037769 4.932 0.08492 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Caution! The 𝑝-Value provided by linearHypothesis() might be misleading, because the
degrees of freedom are automatically set to 2. This differs from the degree of overidentification
(𝑚 − 𝑘 = 2 − 1 = 1), making the 𝐽 -statistic follow a 𝜒2

1 distribution instead of the default
assumption of 𝜒2

2 distribution in linearHypothesis().

We can easily compute the correct p-Value using pchisq().

# compute correct p-value for J-statistic
pchisq(cig_OR_test[2, 5], df = 1, lower.tail = FALSE)

[1] 0.02636406

Since the reported value is smaller than 0.05, we reject the null hypothesis that both instru-
ments are exogenous at the 5% level. From this we can deduce that one of the following
statements is true:

1. The sales tax is an invalid instrument for the cigarettes package price.

2. The cigarettes-specific sales tax is an invalid instrument for the cigarettes package price.

3. Both instruments are invalid.

Stock and Watson (2020) argue that the case for the exogeneity of the general sales tax is
stronger than that for the cigarette-specific tax, since the political process can link changes in
the cigarette-specific tax to changes in the cigarette market and smoking policy.

Taking this into consideration, the IV estimate of the long-run elasticity of demand for
cigarettes considered the most trustworthy would be −0.94, the TSLS estimate obtained using
the general sales tax as the only instrument.
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6.6 Summary

The instrument variable selected for our model is the general sales tax. The IV regression
model making use of this instrument is

log(𝑄cigarettes
𝑖,1995 ) − log(𝑄cigarettes

𝑖,1985 ) = −0.118 − 0.938 [log(𝑃 cigarettes
𝑖,1995 ) − log(𝑃 cigarettes

𝑖,1985 )] (6.2)
+ 0.526 [log(income𝑖,1995) − log(income𝑖,1985)] + 𝑢𝑖 (5.9)

This estimate indicates that the cigarette consumption is elastic: over a 10-year period, an
increase in the average price per package by 1% is expected to reduce consumption on average
by 0.94 percentage points. This suggests that, over the long term, rises in the price per pack
can significantly decrease cigarette consumption.

We have seen how easy and straightforward it is to estimate IV regression models in R with
the ivreg() function from the package AER. This facilitates and simplifies the implementation
of the TSLS estimation approach.

Besides treating IV estimation, we have also discussed how important it is to to test for
weak instruments and how to conduct the corresponding tests, including the overidentifying
restrictions test when there are more instruments than endogenous regressors.

Furthermore, we have implemented a long-run analysis of the demand for cigarettes and its
elasticity, being able to make a conclusion after selecting the most trustworthy instrumental
variable.
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7 Empirical Applications of Experiments

In this chapter, we explore statistical techniques frequently used to quantify the causal im-
pacts of programs, policies, or interventions. Statisticians advocate for an optimal research
design known as an ideal randomized controlled experiment, which involves randomly allo-
cating subjects into two distinct groups: a treatment group receiving the intervention and a
control group not receiving it. By comparing outcomes between these groups, researchers can
estimate the average treatment effect.

We will make use of the following packages in R:

• AER (Christian Kleiber and Zeileis 2008)

• dplyr (Wickham et al. 2023)

• MASS (Ripley 2023)

• mvtnorm (Genz et al. 2023)

• rddtools (Stigler and Quast 2022)

• scales (Wickham and Seidel 2022)

• stargazer(Hlavac 2022)

• tidyr (Wickham, Vaughan, and Girlich 2023)

library(AER)
library(dplyr)
library(MASS)
library(mvtnorm)
library(rddtools)
library(scales)
library(stargazer)
library(tidyr)
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8 Experiments

8.1 Data Set Description & Experimental Design

The Project Student-Teacher Achievement Ratio (STAR) was a large-scale randomized con-
trolled experiment aimed at determining the effectiveness of class size reduction in improving
elementary education.

This 4-year experiment took place during the 1980s in 80 elementary schools across Tennessee
by the State Department of Education.

During the initial year, approximately 6,400 students were randomly allocated to one of three
interventions:

• Treatment 1: small class (13 to 17 students per teacher).

• Treatment 2: regular-with-aide class (22 to 25 students with a full-time teacher’s aide).

• Control group: regular class (22 to 25 students per teacher).

Additionally, teachers were randomly assigned to the classes they taught. These interventions
started as students entered kindergarten and continued until third grade.

The students’ academic evolution was evaluated by aggregating the scores achieved on both
the math and reading sections of the Stanford Achievement Test.

Let’s start loading the STAR data set from the AER package and exploring it

# load STAR data set
data("STAR")

# get an overview
head(STAR, 2)

gender ethnicity birth stark star1 star2 star3 readk read1 read2 read3
1122 female afam 1979 Q3 <NA> <NA> <NA> regular NA NA NA 580
1137 female cauc 1980 Q1 small small small small 447 507 568 587

mathk math1 math2 math3 lunchk lunch1 lunch2 lunch3 schoolk school1
1122 NA NA NA 564 <NA> <NA> <NA> free <NA> <NA>
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1137 473 538 579 593 non-free free non-free free rural rural
school2 school3 degreek degree1 degree2 degree3 ladderk ladder1

1122 <NA> suburban <NA> <NA> <NA> bachelor <NA> <NA>
1137 rural rural bachelor bachelor bachelor bachelor level1 level1

ladder2 ladder3 experiencek experience1 experience2 experience3
1122 <NA> level1 NA NA NA 30
1137 apprentice apprentice 7 7 3 1

tethnicityk tethnicity1 tethnicity2 tethnicity3 systemk system1 system2
1122 <NA> <NA> <NA> cauc <NA> <NA> <NA>
1137 cauc cauc cauc cauc 30 30 30

system3 schoolidk schoolid1 schoolid2 schoolid3
1122 22 <NA> <NA> <NA> 54
1137 30 63 63 63 63

dim(STAR)

[1] 11598 47

# get variable names
names(STAR)

[1] "gender" "ethnicity" "birth" "stark" "star1"
[6] "star2" "star3" "readk" "read1" "read2"
[11] "read3" "mathk" "math1" "math2" "math3"
[16] "lunchk" "lunch1" "lunch2" "lunch3" "schoolk"
[21] "school1" "school2" "school3" "degreek" "degree1"
[26] "degree2" "degree3" "ladderk" "ladder1" "ladder2"
[31] "ladder3" "experiencek" "experience1" "experience2" "experience3"
[36] "tethnicityk" "tethnicity1" "tethnicity2" "tethnicity3" "systemk"
[41] "system1" "system2" "system3" "schoolidk" "schoolid1"
[46] "schoolid2" "schoolid3"

We observe a variety of factor variables describing student and teacher characteristics, as well
as several school indicators recorded for each of the four academic years.

The data set contains a total of 11598 observations on 47 variables and it is presented in
what is called a wide format, that is, each column represents a variable and each student is
represented by a row, where the values for each variable are recorded.

We see that most of the variable names end with a suffix (k, 1, 2, 3) which correspond to the
grade for which the value of the variable was registered. This allows adjusting the formula
argument in lm() for each grade by simply changing the variables’ suffixes accordingly.

122



From the output of head(STAR, 2) we observe some missing values as NA. This is because the
student entered the experiment in the third grade in a regular class.

Consequently, the class size is documented in star3, while the other class type indicator
variables are marked as NA. The student’s math and reading scores for the third grade are
provided, while data for other grades are absent for the same reason.

To obtain only her non-missing recordings, we can easily remove the NAs using the !is.na()
function.

# drop NA recordings for the first observation and print to the console
STAR[1, !is.na(STAR[1, ])]

gender ethnicity birth star3 read3 math3 lunch3 school3 degree3
1122 female afam 1979 Q3 regular 580 564 free suburban bachelor

ladder3 experience3 tethnicity3 system3 schoolid3
1122 level1 30 cauc 22 54

is.na(STAR[1, ]) returns a logical vector with TRUE at positions that correspond to missing
entries for the first observation. By using the ! operator, we invert the result to obtain only
non-NA entries for the first student in the data set.

When using lm(), it is not necessary to remove rows with missing data, as it is done by default.
Removing missing data might lead to a small number of observations, which can make our
estimates less accurate and our conclusions unreliable.

However, this isn’t a problem in our study because, as we’ll see later, we have more than 5000
observations for each of the regressions we will conduct.

8.2 Analysis of the STAR data

Because there are two treatment groups (small class and regular-sized class with an aide),
the regression version of the differences estimator requires adjustment to accommodate these
groups along with the control group.

This adjustment involves introducing two binary variables: one indicating whether the student
is in a small class and another indicating whether the student is in a regular-sized class with
an aide. This leads to the population regression model

𝑌𝑖 = 𝛽0 + 𝛽1 𝑆𝑚𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖 + 𝛽2 𝑅𝑒𝑔𝐴𝑖𝑑𝑒𝑖 + 𝑢𝑖 (6.1)
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where 𝑌𝑖 represents a test score, 𝑆𝑚𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖 equals 1 if the 𝑖𝑡ℎ student is in a small class and
0 otherwise, and 𝑅𝑒𝑔𝐴𝑖𝑑𝑒𝑖 equals 1 if the 𝑖𝑡ℎ student is in a regular class with an aide and 0
otherwise.

The effect on the test score of being in a small class relative to a regular class is 𝛽1, and the
effect of being in a regular class with an aide relative to a regular class is 𝛽2.

The differences estimator for the experiment can then be calculated by estimating 𝛽1 and 𝛽2
in Equation (6.1) using ordinary least squares (OLS).

We will now perform regression (6.1) for each grade separately. The dependent variable will
be the sum of the points scored in the math and reading parts, which can be constructed using
I().

# compute differences estimates for each grade
fmk <- lm(I(readk + mathk) ~ stark, data = STAR) # kindergarten
fm1 <- lm(I(read1 + math1) ~ star1, data = STAR) # first grade
fm2 <- lm(I(read2 + math2) ~ star2, data = STAR) # second grade
fm3 <- lm(I(read3 + math3) ~ star3, data = STAR) # third grade

# obtain coefficient matrix using robust standard errors
coeftest(fmk, vcov = vcovHC, type= "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 918.04289 1.63339 562.0473 < 2.2e-16 ***
starksmall 13.89899 2.45409 5.6636 1.554e-08 ***
starkregular+aide 0.31394 2.27098 0.1382 0.8901
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(fm1, vcov = vcovHC, type= "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1039.3926 1.7846 582.4321 < 2.2e-16 ***
star1small 29.7808 2.8311 10.5190 < 2.2e-16 ***
star1regular+aide 11.9587 2.6520 4.5093 6.62e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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coeftest(fm2, vcov = vcovHC, type= "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1157.8066 1.8151 637.8820 < 2.2e-16 ***
star2small 19.3944 2.7117 7.1522 9.55e-13 ***
star2regular+aide 3.4791 2.5447 1.3672 0.1716
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(fm3, vcov = vcovHC, type= "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1228.50636 1.68001 731.2483 < 2.2e-16 ***
star3small 15.58660 2.39604 6.5051 8.393e-11 ***
star3regular+aide -0.29094 2.27271 -0.1280 0.8981
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We can present as usual our results in a table using stargazer()

# compute robust standard errors for each model and gather them in a list
rob_se_1 <- list(sqrt(diag(vcovHC(fmk, type = "HC1"))),

sqrt(diag(vcovHC(fm1, type = "HC1"))),
sqrt(diag(vcovHC(fm2, type = "HC1"))),
sqrt(diag(vcovHC(fm3, type = "HC1"))))

stargazer(fmk,fm1,fm2,fm3,
se = rob_se_1,
type="html",
omit.stat = "f", df=FALSE)

<table style="text-align:center"><tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="4"><em>Dependent variable:</em></td></tr>
<tr><td></td><td colspan="4" style="border-bottom: 1px solid black"></td></tr>
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<tr><td style="text-align:left"></td><td>I(readk + mathk)</td><td>I(read1 + math1)</td><td>I(read2 + math2)</td><td>I(read3 + math3)</td></tr>
<tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">starksmall</td><td>13.899<sup>***</sup></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td>(2.454)</td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">starkregular+aide</td><td>0.314</td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td>(2.271)</td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">star1small</td><td></td><td>29.781<sup>***</sup></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td>(2.831)</td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">star1regular+aide</td><td></td><td>11.959<sup>***</sup></td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td>(2.652)</td><td></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">star2small</td><td></td><td></td><td>19.394<sup>***</sup></td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(2.712)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">star2regular+aide</td><td></td><td></td><td>3.479</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(2.545)</td><td></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">star3small</td><td></td><td></td><td></td><td>15.587<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(2.396)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">star3regular+aide</td><td></td><td></td><td></td><td>-0.291</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(2.273)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Constant</td><td>918.043<sup>***</sup></td><td>1,039.393<sup>***</sup></td><td>1,157.807<sup>***</sup></td><td>1,228.506<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(1.633)</td><td>(1.785)</td><td>(1.815)</td><td>(1.680)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>5,786</td><td>6,379</td><td>6,049</td><td>5,967</td></tr>
<tr><td style="text-align:left">R<sup>2</sup></td><td>0.007</td><td>0.017</td><td>0.009</td><td>0.010</td></tr>
<tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.007</td><td>0.017</td><td>0.009</td><td>0.010</td></tr>
<tr><td style="text-align:left">Residual Std. Error</td><td>73.490</td><td>90.501</td><td>83.694</td><td>72.910</td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="4" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
</table>

Based on the estimates, students in kindergarten seem to benefit significantly from being in
smaller classes, showing an average test score increase of 13.9 points compared to those in
regular classes.

However, the effect of having an aide in a regular class is minimal, with an estimated increase
of only 0.31 points on the test.
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Across all grades, the data indicates that smaller classes lead to improved test scores, rejecting
the idea that they provide no benefit at a 1% significance level.

Yet, the evidence for the effectiveness of having an aide in a regular class is less conclusive,
except for first graders, even at a 10% significance level.

The estimated improvements in smaller classes are similar across kindergarten, 2nd, and 3rd
grades, though the effect appears slightly stronger in first grade.

Overall, the results suggest that reducing class size has a noticeable impact on test performance,
whereas adding an aide to a regular-sized class has only a minor effect, possibly close to zero.

8.3 Including Additional Regressors

In our study case, there may be other variables that explain the variation in the dependent
variable. For this reason, by adding additional regressors to the model, we can enhance the
precision of the estimated causal effects.

The differences estimator with additional regressors is more efficient than the differences esti-
mator if the additional regressors explain some of the variation in the dependent variable.

Moreover, if the treatment allocation was not completely random due to protocol deviations,
our previous estimates could be biased.

To address these concerns and provide more robust estimates, we will now include additional re-
gressors measuring teacher, school, and student characteristics, particularly focusing on kinder-
garten. We consider the following variables:

• experience - Teacher’s years of experience

• boy - Student is a boy (dummy)

• lunch - Free lunch eligibility (dummy)

• black - Student is African-American (dummy)

• race - Student’s race is other than black or white (dummy)

• schoolid - School indicator variables

We will use these extra regressors to estimate the following models:
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𝑌𝑖 = 𝛽0 + 𝛽1 𝑆𝑚𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖 + 𝛽2 𝑅𝑒𝑔𝐴𝑖𝑑𝑒𝑖 + 𝑢𝑖, (6.2)
𝑌𝑖 = 𝛽0 + 𝛽1 𝑆𝑚𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖 + 𝛽2 𝑅𝑒𝑔𝐴𝑖𝑑𝑒𝑖 + 𝛽3 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 + 𝑢𝑖, (6.3)
𝑌𝑖 = 𝛽0 + 𝛽1 𝑆𝑚𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖 + 𝛽2 𝑅𝑒𝑔𝐴𝑖𝑑𝑒𝑖 + 𝛽3 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 + 𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑑 + 𝑢𝑖, (6.4)
𝑌𝑖 = 𝛽0 + 𝛽1 𝑆𝑚𝑎𝑙𝑙𝐶𝑙𝑎𝑠𝑠𝑖 + 𝛽2 𝑅𝑒𝑔𝐴𝑖𝑑𝑒𝑖 + 𝛽3 𝑒𝑥𝑝𝑒𝑟𝑖𝑒𝑛𝑐𝑒𝑖 + 𝛽4 𝑏𝑜𝑦 + 𝛽5 𝑙𝑢𝑛𝑐ℎ (8.1)

+ 𝛽6 𝑏𝑙𝑎𝑐𝑘 + 𝛽7 𝑟𝑎𝑐𝑒 + 𝑠𝑐ℎ𝑜𝑜𝑙𝑖𝑑 + 𝑢𝑖. (6.5)

With the help of functions from the dplyr and tidyr packages, we will create our custom
subset of the data, including only kindergarten data.

First, we will use transmute() to keep only relevant variables (gender, ethnicity, stark,
readk, mathk, lunchk, experiencek and schoolidk) and drop the rest.

Then, using mutate() and logical statements within the function ifelse(), we will add the
additional binary variables black, race and boy.

# generate subset with kindergarten data
STARK <- STAR %>%

transmute(gender,
ethnicity,
stark,
readk,
mathk,
lunchk,
experiencek,
schoolidk) |>

mutate(black = ifelse(ethnicity == "afam", 1, 0),
race = ifelse(ethnicity == "afam" | ethnicity == "cauc", 1, 0),
boy = ifelse(gender == "male", 1, 0))

# estimate the models
gradeK1 <- lm(I(mathk + readk) ~ stark + experiencek,

data = STARK)

gradeK2 <- lm(I(mathk + readk) ~ stark + experiencek + schoolidk,
data = STARK)

gradeK3 <- lm(I(mathk + readk) ~ stark + experiencek + boy + lunchk
+ black + race + schoolidk,
data = STARK)
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To keep it short, we skip displaying the coefficients for the indicator dummies in the
coeftest() output by subsetting the matrices.

# obtain robust inference on the significance of coefficients
coeftest(gradeK1, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 904.72124 2.22235 407.1020 < 2.2e-16 ***
starksmall 14.00613 2.44704 5.7237 1.095e-08 ***
starkregular+aide -0.60058 2.25430 -0.2664 0.7899
experiencek 1.46903 0.16929 8.6778 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

coeftest(gradeK2, vcov. = vcovHC, type = "HC1")[1:4, ]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 925.6748750 7.6527218 120.9602155 0.000000e+00
starksmall 15.9330822 2.2411750 7.1092540 1.310324e-12
starkregular+aide 1.2151960 2.0353415 0.5970477 5.504993e-01
experiencek 0.7431059 0.1697619 4.3773429 1.222880e-05

coeftest(gradeK3, vcov. = vcovHC, type = "HC1")[1:7, ]

Estimate Std. Error t value Pr(>|t|)
(Intercept) 937.6831330 14.3726687 65.2407117 0.000000e+00
starksmall 15.8900507 2.1551817 7.3729516 1.908960e-13
starkregular+aide 1.7869378 1.9614592 0.9110247 3.623211e-01
experiencek 0.6627251 0.1659298 3.9940097 6.578846e-05
boy -12.0905123 1.6726331 -7.2284306 5.533119e-13
lunchkfree -34.7033021 1.9870366 -17.4648529 1.437931e-66
black -25.4305130 3.4986918 -7.2685776 4.125252e-13

And we display the results in a stargazer() table

129



# compute robust standard errors for each model and gather them in a list
rob_se_2 <- list(sqrt(diag(vcovHC(fmk, type = "HC1"))),

sqrt(diag(vcovHC(gradeK1, type = "HC1"))),
sqrt(diag(vcovHC(gradeK2, type = "HC1"))),
sqrt(diag(vcovHC(gradeK3, type = "HC1"))))

stargazer(fmk, gradeK1, gradeK2, gradeK3,
se = rob_se_2,
type="html",
omit.stat = "f", df=FALSE)

<table style="text-align:center"><tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td colspan="4"><em>Dependent variable:</em></td></tr>
<tr><td></td><td colspan="4" style="border-bottom: 1px solid black"></td></tr>
<tr><td style="text-align:left"></td><td>I(readk + mathk)</td><td colspan="3">I(mathk + readk)</td></tr>
<tr><td style="text-align:left"></td><td>(1)</td><td>(2)</td><td>(3)</td><td>(4)</td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">starksmall</td><td>13.899<sup>***</sup></td><td>14.006<sup>***</sup></td><td>15.933<sup>***</sup></td><td>15.890<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(2.454)</td><td>(2.447)</td><td>(2.241)</td><td>(2.155)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">starkregular+aide</td><td>0.314</td><td>-0.601</td><td>1.215</td><td>1.787</td></tr>
<tr><td style="text-align:left"></td><td>(2.271)</td><td>(2.254)</td><td>(2.035)</td><td>(1.961)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">experiencek</td><td></td><td>1.469<sup>***</sup></td><td>0.743<sup>***</sup></td><td>0.663<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td>(0.169)</td><td>(0.170)</td><td>(0.166)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">boy</td><td></td><td></td><td></td><td>-12.091<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(1.673)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">lunchkfree</td><td></td><td></td><td></td><td>-34.703<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(1.987)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">black</td><td></td><td></td><td></td><td>-25.431<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(3.499)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">race</td><td></td><td></td><td></td><td>8.501</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td>(12.520)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk2</td><td></td><td></td><td>-81.716<sup>***</sup></td><td>-57.289<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.134)</td><td>(9.096)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk3</td><td></td><td></td><td>-7.175</td><td>-7.833</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.474)</td><td>(8.809)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
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<tr><td style="text-align:left">schoolidk4</td><td></td><td></td><td>-44.735<sup>***</sup></td><td>-51.694<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.093)</td><td>(8.739)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk5</td><td></td><td></td><td>-48.425<sup>***</sup></td><td>-45.955<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(12.594)</td><td>(11.710)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk6</td><td></td><td></td><td>-38.441<sup>***</sup></td><td>-33.961<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.456)</td><td>(10.042)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk7</td><td></td><td></td><td>22.672<sup>**</sup></td><td>26.270<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.891)</td><td>(9.916)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk8</td><td></td><td></td><td>-34.505<sup>***</sup></td><td>-35.926<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.000)</td><td>(8.451)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk9</td><td></td><td></td><td>4.032</td><td>2.880</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.875)</td><td>(9.174)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk10</td><td></td><td></td><td>38.558<sup>***</sup></td><td>32.080<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.524)</td><td>(12.536)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk11</td><td></td><td></td><td>57.981<sup>***</sup></td><td>59.039<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.795)</td><td>(12.332)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk12</td><td></td><td></td><td>1.828</td><td>11.213</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.199)</td><td>(10.627)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk13</td><td></td><td></td><td>36.435<sup>***</sup></td><td>37.073<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.658)</td><td>(11.391)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk14</td><td></td><td></td><td>-32.964<sup>**</sup></td><td>8.736</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.367)</td><td>(13.104)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk15</td><td></td><td></td><td>-51.949<sup>***</sup></td><td>-9.467</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.803)</td><td>(9.641)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk16</td><td></td><td></td><td>-76.829<sup>***</sup></td><td>-31.232<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(8.916)</td><td>(8.933)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk17</td><td></td><td></td><td>-18.900<sup>*</sup></td><td>-12.952</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.388)</td><td>(10.358)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk18</td><td></td><td></td><td>-51.424<sup>***</sup></td><td>-23.980<sup>***</sup></td></tr>
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<tr><td style="text-align:left"></td><td></td><td></td><td>(9.513)</td><td>(8.909)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk19</td><td></td><td></td><td>-29.031<sup>***</sup></td><td>15.682</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.806)</td><td>(9.615)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk20</td><td></td><td></td><td>-24.413<sup>**</sup></td><td>2.680</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.345)</td><td>(9.960)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk21</td><td></td><td></td><td>16.309</td><td>32.496<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.281)</td><td>(10.092)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk22</td><td></td><td></td><td>-16.033</td><td>27.407<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.091)</td><td>(9.984)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk23</td><td></td><td></td><td>31.210<sup>***</sup></td><td>52.817<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.868)</td><td>(11.327)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk24</td><td></td><td></td><td>-39.174<sup>***</sup></td><td>-14.828</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.481)</td><td>(9.151)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk25</td><td></td><td></td><td>-33.916<sup>***</sup></td><td>-11.929</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.540)</td><td>(10.580)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk26</td><td></td><td></td><td>-65.901<sup>***</sup></td><td>-26.336<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.595)</td><td>(9.825)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk27</td><td></td><td></td><td>20.344<sup>**</sup></td><td>60.821<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.242)</td><td>(9.206)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk28</td><td></td><td></td><td>-43.699<sup>***</sup></td><td>-1.865</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.613)</td><td>(9.531)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk29</td><td></td><td></td><td>-19.793<sup>*</sup></td><td>23.716<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.724)</td><td>(10.518)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk30</td><td></td><td></td><td>73.697<sup>***</sup></td><td>114.824<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.865)</td><td>(12.013)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk31</td><td></td><td></td><td>5.703</td><td>51.622<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.708)</td><td>(11.818)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk32</td><td></td><td></td><td>-76.597<sup>***</sup></td><td>-31.731<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(8.915)</td><td>(8.876)</td></tr>
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<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk33</td><td></td><td></td><td>-74.895<sup>***</sup></td><td>-29.582<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.119)</td><td>(9.079)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk34</td><td></td><td></td><td>-43.062<sup>***</sup></td><td>-47.951<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.930)</td><td>(9.615)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk35</td><td></td><td></td><td>-46.238<sup>***</sup></td><td>-41.563<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.735)</td><td>(9.907)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk36</td><td></td><td></td><td>-13.686</td><td>-21.772<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.091)</td><td>(10.422)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk37</td><td></td><td></td><td>-12.351</td><td>-7.768</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.731)</td><td>(9.043)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk38</td><td></td><td></td><td>-10.610</td><td>-2.694</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.425)</td><td>(12.969)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk39</td><td></td><td></td><td>-23.309<sup>**</sup></td><td>-13.281</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.394)</td><td>(11.003)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk40</td><td></td><td></td><td>17.470</td><td>30.083<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(12.397)</td><td>(11.823)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk41</td><td></td><td></td><td>51.231<sup>***</sup></td><td>39.496<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(12.830)</td><td>(12.484)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk42</td><td></td><td></td><td>-2.847</td><td>-10.336</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(15.449)</td><td>(14.884)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk43</td><td></td><td></td><td>-16.442</td><td>-25.761<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.389)</td><td>(10.963)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk44</td><td></td><td></td><td>6.826</td><td>43.208<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.638)</td><td>(10.780)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk45</td><td></td><td></td><td>-105.064<sup>***</sup></td><td>-58.155<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.504)</td><td>(9.470)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk46</td><td></td><td></td><td>-17.011</td><td>-21.007<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.569)</td><td>(9.861)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
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<tr><td style="text-align:left">schoolidk47</td><td></td><td></td><td>-18.214<sup>*</sup></td><td>-22.795<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.842)</td><td>(10.458)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk48</td><td></td><td></td><td>-4.983</td><td>0.849</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.414)</td><td>(9.766)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk49</td><td></td><td></td><td>9.272</td><td>12.206</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.010)</td><td>(10.467)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk50</td><td></td><td></td><td>-3.353</td><td>1.796</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.661)</td><td>(9.751)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk51</td><td></td><td></td><td>11.627</td><td>7.187</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.856)</td><td>(9.426)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk52</td><td></td><td></td><td>30.792<sup>**</sup></td><td>17.727</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.018)</td><td>(12.542)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk53</td><td></td><td></td><td>-66.974<sup>***</sup></td><td>-50.514<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.075)</td><td>(9.655)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk54</td><td></td><td></td><td>-0.463</td><td>-6.485</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.873)</td><td>(11.069)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk55</td><td></td><td></td><td>-35.635<sup>***</sup></td><td>-37.781<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.893)</td><td>(9.439)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk56</td><td></td><td></td><td>-90.780<sup>***</sup></td><td>-82.290<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.488)</td><td>(10.056)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk57</td><td></td><td></td><td>-43.141<sup>***</sup></td><td>-45.727<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.092)</td><td>(10.424)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk58</td><td></td><td></td><td>19.694<sup>**</sup></td><td>8.703</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.284)</td><td>(8.753)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk59</td><td></td><td></td><td>10.294</td><td>8.543</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.952)</td><td>(11.501)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk60</td><td></td><td></td><td>-40.156<sup>***</sup></td><td>-32.841<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.474)</td><td>(9.726)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk61</td><td></td><td></td><td>-28.758<sup>***</sup></td><td>-36.706<sup>***</sup></td></tr>
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<tr><td style="text-align:left"></td><td></td><td></td><td>(10.152)</td><td>(9.478)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk62</td><td></td><td></td><td>-36.164<sup>***</sup></td><td>-33.905<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.480)</td><td>(8.703)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk63</td><td></td><td></td><td>18.475<sup>*</sup></td><td>19.152<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.873)</td><td>(9.166)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk64</td><td></td><td></td><td>-24.511<sup>**</sup></td><td>-22.597<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.897)</td><td>(10.126)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk65</td><td></td><td></td><td>17.476</td><td>16.055</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.031)</td><td>(12.792)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk66</td><td></td><td></td><td>-36.682<sup>***</sup></td><td>-39.379<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.523)</td><td>(9.020)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk67</td><td></td><td></td><td>-13.550</td><td>-10.024</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(13.024)</td><td>(12.418)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk68</td><td></td><td></td><td>26.870<sup>***</sup></td><td>38.904<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.380)</td><td>(9.764)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk69</td><td></td><td></td><td>24.625<sup>**</sup></td><td>18.977<sup>*</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.495)</td><td>(10.898)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk70</td><td></td><td></td><td>-20.916<sup>**</sup></td><td>-15.180</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.251)</td><td>(9.912)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk71</td><td></td><td></td><td>-39.109<sup>***</sup></td><td>-39.598<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(9.869)</td><td>(9.352)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk72</td><td></td><td></td><td>11.188</td><td>19.390<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.451)</td><td>(9.696)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk73</td><td></td><td></td><td>-0.435</td><td>0.456</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.868)</td><td>(11.019)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk74</td><td></td><td></td><td>4.574</td><td>6.229</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(12.049)</td><td>(11.388)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk75</td><td></td><td></td><td>7.822</td><td>-1.319</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.975)</td><td>(11.415)</td></tr>
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<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk76</td><td></td><td></td><td>-15.980</td><td>-19.275<sup>**</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.087)</td><td>(9.681)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk78</td><td></td><td></td><td>-48.027<sup>***</sup></td><td>-51.367<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(10.058)</td><td>(9.656)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk79</td><td></td><td></td><td>-15.241</td><td>-15.333</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(11.521)</td><td>(10.519)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">schoolidk80</td><td></td><td></td><td>-4.414</td><td>-6.436</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td>(12.811)</td><td>(12.002)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td style="text-align:left">Constant</td><td>918.043<sup>***</sup></td><td>904.721<sup>***</sup></td><td>925.675<sup>***</sup></td><td>937.683<sup>***</sup></td></tr>
<tr><td style="text-align:left"></td><td>(1.633)</td><td>(2.222)</td><td>(7.653)</td><td>(14.373)</td></tr>
<tr><td style="text-align:left"></td><td></td><td></td><td></td><td></td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Observations</td><td>5,786</td><td>5,766</td><td>5,766</td><td>5,748</td></tr>
<tr><td style="text-align:left">R<sup>2</sup></td><td>0.007</td><td>0.020</td><td>0.234</td><td>0.291</td></tr>
<tr><td style="text-align:left">Adjusted R<sup>2</sup></td><td>0.007</td><td>0.020</td><td>0.223</td><td>0.281</td></tr>
<tr><td style="text-align:left">Residual Std. Error</td><td>73.490</td><td>73.085</td><td>65.075</td><td>62.663</td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"><em>Note:</em></td><td colspan="4" style="text-align:right"><sup>*</sup>p<0.1; <sup>**</sup>p<0.05; <sup>***</sup>p<0.01</td></tr>
</table>

We observe that the multiple regression estimates of the effects of both treatments (small class
and regular-sized class with an aide) are similar across different models.

This suggests that adding more regressors to the analysis (student characteristics and school
fixed effects) doesn’t change how these treatments affect the outcome. It makes it more
plausible that assigning students to smaller classes is random and not influenced by hidden
factors.

As anticipated, including more factors improves the accuracy of the regression model (measured
by 𝑅2), and the margin of error for the class size effect decreases from 4.23 in column (1) to
3.95 in column (4).

Since teachers were randomly assigned to different classes within a school, the experiment also
allows us to measure how teacher experience impacts test scores in kindergarten, by controlling
for school fixed effects as in column (3)

Regression (3) estimates the average effect of 10 years teaching experience to be 10 ⋅ 0.74 = 7.4
points on test scores. Note that the additional estimates regarding student characteristics in
regression (4) lack a causal interpretation due to their non-random assignment.

136



To assess and compare the predicted effects of class size, we must first translate the estimated
changes in raw test scores into units of standard deviations of test scores, so that the estimates
are comparable across grades.

# compute the sample standard deviations of test scores
SSD <- c("K" = sd(na.omit(STAR$readk + STAR$mathk)),

"1" = sd(na.omit(STAR$read1 + STAR$math1)),
"2" = sd(na.omit(STAR$read2 + STAR$math2)),
"3" = sd(na.omit(STAR$read3 + STAR$math3)))

# translate the effects of small classes to standard deviations
Small <- c("K" = as.numeric(coef(fmk)[2]/SSD[1]),

"1" = as.numeric(coef(fm1)[2]/SSD[2]),
"2" = as.numeric(coef(fm2)[2]/SSD[3]),
"3" = as.numeric(coef(fm3)[2]/SSD[4]))

# adjust the standard errors
SmallSE <- c("K" = as.numeric(rob_se_1[[1]][2]/SSD[1]),

"1" = as.numeric(rob_se_1[[2]][2]/SSD[2]),
"2" = as.numeric(rob_se_1[[3]][2]/SSD[3]),
"3" = as.numeric(rob_se_1[[4]][2]/SSD[4]))

# translate the effects of regular classes with aide to standard deviations
RegAide<- c("K" = as.numeric(coef(fmk)[3]/SSD[1]),

"1" = as.numeric(coef(fm1)[3]/SSD[2]),
"2" = as.numeric(coef(fm2)[3]/SSD[3]),
"3" = as.numeric(coef(fm3)[3]/SSD[4]))

# adjust the standard errors
RegAideSE <- c("K" = as.numeric(rob_se_1[[1]][3]/SSD[1]),

"1" = as.numeric(rob_se_1[[2]][3]/SSD[2]),
"2" = as.numeric(rob_se_1[[3]][3]/SSD[3]),
"3" = as.numeric(rob_se_1[[4]][3]/SSD[4]))

# gather the results in a data.frame and round
df <- t(round(data.frame(

Small, SmallSE, RegAide, RegAideSE, SSD),
digits = 2))

# generate a simple table using stargazer
stargazer(df,

title = "Estimated Class Size Effects
(in Units of Standard Deviations)",
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type = "html",
summary = FALSE,
header = FALSE
)

<table style="text-align:center"><caption><strong>Estimated Class Size Effect</strong></caption>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left"></td><td>K</td><td>1</td><td>2</td><td>3</td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr><tr><td style="text-align:left">Small</td><td>0.190</td><td>0.330</td><td>0.230</td><td>0.210</td></tr>
<tr><td style="text-align:left">SmallSE</td><td>0.030</td><td>0.030</td><td>0.030</td><td>0.030</td></tr>
<tr><td style="text-align:left">RegAide</td><td>0</td><td>0.130</td><td>0.040</td><td>0</td></tr>
<tr><td style="text-align:left">RegAideSE</td><td>0.030</td><td>0.030</td><td>0.030</td><td>0.030</td></tr>
<tr><td style="text-align:left">SSD</td><td>73.750</td><td>91.280</td><td>84.080</td><td>73.270</td></tr>
<tr><td colspan="5" style="border-bottom: 1px solid black"></td></tr></table>

In terms of standard deviation units, the estimated impact of being in a small class remains
consistent across grades K, 2, and 3, at approximately one-fifth of a standard deviation in test
scores.

Similarly, for grades K, 2, and 3, the effect of being in a regular-sized class with an aide is
negligible, approximately 0.

Although the treatment effects appear larger for first grade, the contrast between the small
class and the regular-sized class with an aide remains consistent at 0.20 for first grade, mirroring
the other grades.

One possible explanation for the first-grade results is that students in the control group-those
in regular-sized classes without an aide-may have performed poorly on the test that year due
to some unusual circumstance, perhaps random sampling variation.
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9 Quasi-Experiments

In quasi-experiments, we use “as if” randomness to mimic random assignment. There are two
main types:

• When random variations make it seem like the treatment is randomly assigned.

• When the treatment assignment is only partially random.

The first type lets us estimate effects using methods like the difference estimator or differences-
in-differences (DID). If there’s doubt about systematic differences, we might use an instrumen-
tal variable (IV) approach.

For more complex situations, like when treatment depends on a threshold in a continuous vari-
able, we use techniques like sharp regression discontinuity design (RDD) and fuzzy regression
discontinuity design (FRDD).

Since there are no empirical examples in this section of the book, we’ll explore this section
using simulated data in R to explain how DID, RDD, and FRDD work.

9.1 Differences-in-Differences Estimator

The Differences-in-Differences (DID) estimator compares changes in outcomes over time be-
tween treated and control groups to estimate the causal effect of an intervention. The DID
estimator is

̂𝛽diffs-in-diffs
1 = (𝑌 treatment,after − 𝑌 treatment,before) − (𝑌 control,after − 𝑌 control,before) (9.1)

= Δ𝑌 treatment −Δ𝑌 control (6.6)

with

• 𝑌 treatment,before - the sample average in the treatment group before the treatment

• 𝑌 treatment,after - the sample average in the treatment group after the treatment

• 𝑌 control,before - the sample average in the control group before the treatment

139



• 𝑌 control,after - the sample average in the control group after the treatment.

This is always much easier to understand with a graphical representation, so we will reproduce
Figure 13.1 of the book by Stock and Watson in R:

# initialize plot and add control group
plot(c(0, 1), c(6, 8), type = "p",

ylim = c(5, 12), xlim = c(-0.3, 1.3),
main = "The Differences-in-Differences Estimator",
xlab = "Period", ylab = "Y",
col = "steelblue", pch = 20, xaxt = "n", yaxt = "n")

axis(1, at = c(0, 1), labels = c("before", "after"))
axis(2, at = c(0, 13))

# add treatment group
points(c(0, 1, 1), c(7, 9, 11), col = "darkred", pch = 20)

# add line segments
lines(c(0, 1), c(7, 11), col = "darkred")
lines(c(0, 1), c(6, 8), col = "steelblue")
lines(c(0, 1), c(7, 9), col = "darkred", lty = 2)
lines(c(1, 1), c(9, 11), col = "black", lty = 2, lwd = 2)

# add annotations
text(1, 10, expression(hat(beta)[1]^{DID}), cex = 0.8, pos = 4)
text(0, 5.5, "s. mean control", cex = 0.8 , pos = 4)
text(0, 6.8, "s. mean treatment", cex = 0.8 , pos = 4)
text(1, 7.9, "s. mean control", cex = 0.8 , pos = 4)
text(1, 11.1, "s. mean treatment", cex = 0.8 , pos = 4)

̂𝛽DID
1 is the OLS estimator of 𝛽1 in

Δ𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖 (6.7)

where Δ𝑌𝑖 is the difference in pre- and post-treatment outcomes of individual 𝑖 and 𝑋𝑖 is the
treatment indicator of interest.

If we add regressors measuring pre-treatment characteristics we have

Δ𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑊1𝑖 +⋯+ 𝛽1+𝑟𝑊𝑟𝑖 + 𝑢𝑖, (6.8)
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which is the difference-in-differences estimator with additional regressors.

Let’s simulate pre- and post-treatment data in R

# set sample size
n <- 200

# define treatment effect
TEffect <- 4

# generate treatment dummy
TDummy <- c(rep(0, n/2), rep(1, n/2))

# simulate pre- and post-treatment values of the dependent variable
y_pre <- 7 + rnorm(n)
y_pre[1:n/2] <- y_pre[1:n/2] - 1
y_post <- 7 + 2 + TEffect * TDummy + rnorm(n)
y_post[1:n/2] <- y_post[1:n/2] - 1

Now we plot the data. The jitter() function adds a bit of randomness to the horizontal
positions of points, reducing overlap. Additionally, the alpha() function from the package
scales lets you control how transparent the colors are in your plots.

library(scales)

pre <- rep(0, length(y_pre[TDummy==0]))
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post <- rep(1, length(y_pre[TDummy==0]))

# plot control group in t=1
plot(jitter(pre, 0.6), y_pre[TDummy == 0],

ylim = c(0, 16), col = alpha("steelblue", 0.3),
pch = 20, xlim = c(-0.5, 1.5),
ylab = "Y", xlab = "Period",
xaxt = "n", main = "Artificial Data for DID Estimation")

axis(1, at = c(0, 1), labels = c("before", "after"))

# add treatment group in t=1
points(jitter(pre, 0.6), y_pre[TDummy == 1],

col = alpha("darkred", 0.3), pch = 20)

# add control group in t=2
points(jitter(post, 0.6), y_post[TDummy == 0],

col = alpha("steelblue", 0.5), pch = 20)

# add treatment group in t=2
points(jitter(post, 0.6), y_post[TDummy == 1],

col = alpha("darkred", 0.5), pch = 20)

0
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We observe higher average values for both groups after treatment, with a more pronounced
increase observed in the treatment group. By employing the Differences-in-Differences (DID)
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method, we can assess the extent to which this disparity can be attributed to the treatment
itself.

# compute the DID estimator for the treatment effect 'by hand'
mean(y_post[TDummy == 1]) - mean(y_pre[TDummy == 1]) -
(mean(y_post[TDummy == 0]) - mean(y_pre[TDummy == 0]))

[1] 4.250925

The reported estimate is close to 4, the treatment effect value we previously selected for
TEffect.

We can also obtain the DID estimator by performing OLS estimation of the simple linar model
(6.7).

# compute the DID estimator using a linear model
lm(I(y_post - y_pre) ~ TDummy)

Call:
lm(formula = I(y_post - y_pre) ~ TDummy)

Coefficients:
(Intercept) TDummy

1.753 4.251

Lastly, we could alternatively compute the treatment effect by estimating 𝛽𝑇𝐸 in

𝑌𝑖 = 𝛽0 + 𝛽1𝐷𝑖 + 𝛽2𝑃𝑒𝑟𝑖𝑜𝑑𝑖 + 𝛽𝑇𝐸(𝑃𝑒𝑟𝑖𝑜𝑑𝑖 ×𝐷𝑖) + 𝜖𝑖, (6.9)

where 𝐷𝑖 is the binary treatment indicator, 𝑃𝑒𝑟𝑖𝑜𝑑 a binary indicator for the after-treatment
period and 𝑃𝑒𝑟𝑖𝑜𝑑𝑖 ×𝐷𝑖 is the interaction term of both.

# prepare data for DID regression using the interaction term
d <- data.frame("Y" = c(y_pre,y_post),

"Treatment" = TDummy,
"Period" = c(rep("1", n), rep("2", n)))

# estimate the model
lm(Y ~ Treatment * Period, data = d)
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Call:
lm(formula = Y ~ Treatment * Period, data = d)

Coefficients:
(Intercept) Treatment Period2 Treatment:Period2

6.1330 0.8881 1.7533 4.2509

As we can see, the estimated coefficient on the interaction term is again the same DID estimate
we computed before.

9.2 Regression Discontinuity Estimators

9.2.1 Sharp Regression Discontinuity

Let’s consider the model

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑊𝑖 + 𝑢𝑖 (6.10)

and let

𝑋𝑖 = {1, if 𝑊𝑖 ≥ 𝑐
0, if 𝑊𝑖 < 𝑐,

so that the treatment receipt represented by𝑋𝑖 depends on a certain threshold 𝑐 of a continuous
variable 𝑊𝑖, known as the running variable.

We call (6.10)) a sharp regression discontinuity design because the treatment assignment is
deterministic and continuous at the threshold: all observations with 𝑊𝑖 ≥ 𝑐 are treated and
those with 𝑊𝑖 < 𝑐 do not receive treatment.

The idea of regression discontinuity design is to use observations with a 𝑊𝑖 close to 𝑐 for the
estimation of 𝛽1, which is the average treatment effect for individuals with 𝑊𝑖 = 𝑐, and is
assumed to be a good approximation to the treatment effect in the population.

We will now estimate a linear SRDD, but first, we generate and plot some sample data
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# generate some sample data
W <- runif(1000, -1, 1)
y <- 3 + 2 * W + 10 * (W>=0) + rnorm(1000)

# load the package 'rddtools'
library(rddtools)

# construct rdd_data
data <- rdd_data(y, W, cutpoint = 0)

# plot the sample data
plot(data,

col = "steelblue",
cex = 0.35,
xlab = "W",
ylab = "Y")

Warning in title(main = main, sub = sub): Zeichenbreite unbekannt für das
Zeichen 0x9

Warning in title(main = main, sub = sub): Zeichenbreite unbekannt für das
Zeichen 0x9

−1.0 −0.5 0.0 0.5 1.0

0
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Y

h=0.0242/0.0242,		n bins=84 (42/42)

The dots in the plot represent bin averages of the outcome variable.
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To estimate the treatment effect using model (6.10) on our generated data we can use
rdd_reg_lm() from the rddtools package. By setting slope ="same" we ensure that the
slopes of the regression function stay consistent on both sides of the threshold 𝑊 = 0.

# estimate the sharp RDD model
rdd_mod <- rdd_reg_lm(rdd_object = data,

slope = "same")
summary(rdd_mod)

Call:
lm(formula = y ~ ., data = dat_step1, weights = weights)

Residuals:
Min 1Q Median 3Q Max

-2.78536 -0.68390 -0.02412 0.66245 2.55417

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.9237 0.0683 42.81 <2e-16 ***
D 10.1821 0.1220 83.43 <2e-16 ***
x 1.9121 0.1042 18.36 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.9645 on 997 degrees of freedom
Multiple R-squared: 0.9756, Adjusted R-squared: 0.9755
F-statistic: 1.991e+04 on 2 and 997 DF, p-value: < 2.2e-16

The estimated coefficient on 𝐷 represents the estimated treatment effect, which is very close
to 10, the treatment effect we chose when generating the simulated data.

Let’s now visualize the result by plotting the estimated sharp RDD model

# plot the RDD model along with binned observations
plot(rdd_mod,

cex = 0.35,
col = "steelblue",
xlab = "W",
ylab = "Y")

Warning in title(main = main, sub = sub): Zeichenbreite unbekannt für das
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Zeichen 0x9

Warning in title(main = main, sub = sub): Zeichenbreite unbekannt für das
Zeichen 0x9
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h=0.9963/0.9963,		n bins=2 (1/1)

9.2.2 Fuzzy Regression Discontinuity

In the traditional setup, we assumed that crossing a threshold automatically leads to treatment,
allowing us to see the jump in population regression functions at that point as the treatment’s
effect.

However, when crossing the threshold doesn’t guarantee treatment (e.g. when other factors
also influence who gets treated) we can’t rely on this assumption. Instead, we can view the
threshold as a point where the likelihood of getting treated suddenly increases.

This increase might happen because of hidden factors affecting the chance of getting treated.
So, the treatment variable 𝑋𝑖 in the equation becomes correlated to the error term 𝑢𝑖, making
it harder to accurately estimate the treatment’s effect.

In such cases, a fuzzy regression discontinuity design, which uses an instrumental variable (IV)
approach, might help. We can use a binary variable 𝑍𝑖 to indicate whether the threshold is
crossed or not.

𝑍𝑖 = {1, if 𝑊𝑖 ≥ 𝑐
0, if 𝑊𝑖 < 𝑐,
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We assume that 𝑍𝑖 relates to 𝑌𝑖 only through the treatment indicator 𝑋𝑖, so 𝑍𝑖 and 𝑢𝑖 are un-
correlated but 𝑍𝑖 influences the receipt of the treatment, so it is correlated with 𝑋𝑖. Therefore,
𝑍𝑖 is a valid instrument for 𝑋𝑖 and we can estimate (6.10) via TSLS.

Let’s now assume that observations with a value of 𝑊𝑖 below 0 do not receive the treatment
and those with 𝑊𝑖 ≥ 0 have a 80% probability of being treated. The treatment effect leads to
an increase in the dependent variable of 2 points.

library(MASS)

# generate sample data
mu <- c(0, 0)
sigma <- matrix(c(1, 0.7, 0.7, 1), ncol = 2)

set.seed(1234)
d <- as.data.frame(mvrnorm(2000, mu, sigma))
colnames(d) <- c("W", "Y")

# introduce fuzziness
d$treatProb <- ifelse(d$W < 0, 0, 0.8)

fuzz <- sapply(X = d$treatProb, FUN = function(x) rbinom(1, 1, prob = x))

# treatment effect
d$Y <- d$Y + fuzz * 2

We now plot the observations using blue for non-treated and red for treated units.

# generate a colored plot of treatment and control group
plot(d$W, d$Y,

col = c("steelblue", "darkred")[factor(fuzz)],
pch= 20,
cex = 0.5,
xlim = c(-3, 3),
ylim = c(-3.5, 5),
xlab = "W",
ylab = "Y")

# add a dashed vertical line at cutoff
abline(v = 0, lty = 2)
#add legend
legend("topleft",pch=20,col=c("steelblue","darkred"),

legend=c("Do not receive treatment","Receive treatment"))
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As we can observe, the receipt of treatment is no longer a deterministic function of the running
variable 𝑊 , since some observations with 𝑊 ≥ 0 did not receive the treatment.

We can estimate a FRDD by setting treatProb as the assignment variable 𝑧 in rdd_data().
The function rdd_reg_lm() applies a TSLS procedure:

1. In the first stage regression, treatment is predicted using 𝑊𝑖 and the cutoff dummy 𝑍𝑖,
the instrumental variable.

2. Using the second stage, where the outcome 𝑌 is regressed on the fitted values and the
running variable 𝑊 , we obtain a consistent estimate of the treatment effect.

# estimate the Fuzzy RDD
data <- rdd_data(d$Y, d$W,

cutpoint = 0,
z = d$treatProb)

frdd_mod <- rdd_reg_lm(rdd_object = data,
slope = "same")

frdd_mod

### RDD regression: parametric ###
Polynomial order: 1
Slopes: same
Number of obs: 2000 (left: 999, right: 1001)

Coefficient:
Estimate Std. Error t value Pr(>|t|)

D 1.981297 0.084696 23.393 < 2.2e-16 ***
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---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated treatment effect is very close to 2, which is the real treatment effect. We can
now plot the estimated regression function and the binned data.

# plot estimated FRDD function
plot(frdd_mod,

cex = 0.5,
lwd = 0.4,
xlim = c(-4, 4),
ylim = c(-3.5, 5),
xlab = "W",
ylab = "Y")

Warning in title(main = main, sub = sub): Zeichenbreite unbekannt für das
Zeichen 0x9

Warning in title(main = main, sub = sub): Zeichenbreite unbekannt für das
Zeichen 0x9

−4 −2 0 2 4

−
2

0
2

4

W

Y

h=3.3374/3.3374,		n bins=4 (2/2)

What if we opted for a Sharp Regression Discontinuity Design (SRDD), disregarding the fact
that treatment isn’t solely determined by the cutoff in 𝑊? We can explore the potential
outcomes by estimating an SRDD using the data we simulated earlier.
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# estimate SRDD
data <- rdd_data(d$Y,

d$W,
cutpoint = 0)

srdd_mod <- rdd_reg_lm(rdd_object = data,
slope = "same")

srdd_mod

### RDD regression: parametric ###
Polynomial order: 1
Slopes: same
Number of obs: 2000 (left: 999, right: 1001)

Coefficient:
Estimate Std. Error t value Pr(>|t|)

D 1.585038 0.067756 23.393 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimate using SRDD indicates a significant downward bias. This method is not reliable
for determining the true causal effect, meaning that increasing the sample size wouldn’t fix
the bias issue.

9.3 Discussion

In the book by Stock and Watson the potential problems with quasi-experiments are
discussed, focusing on threats to internal and external validity.

Internal validity threats include failure of randomization and failure to follow the treatment
protocol, which can lead to biased estimators. They highlight the importance of testing for
systematic differences between treatment and control groups to assess the reliability of quasi-
experiments.

Additionally, they address attrition and instrument validity, emphasizing the need for careful
consideration of instrument relevance and exogeneity.

External validity threats in quasi-experiments are similar to those in conventional regression
studies, with special events creating challenges for generalizability.

Lastly, Stock and Watson discuss estimating causal effects in heterogeneous populations,
where individuals may have different treatment effects; OLS estimators are consistent for the
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average causal effect, but instrumental variables (IV) estimators may estimate a weighted
average of individual effects, known as the local average treatment effect (LATE), highlighting
the importance of understanding how individuals’ treatment decisions affect estimation.
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10 Empirical Applications of Time Series
Regression and Forecasting

In this chapter, we will explore the concepts of Time Series Regression and Forecasting. It will
introduce you to the basic techniques for analyzing time series data, focusing on visualizing
data, estimating autoregressive models, and understanding the concept of stationarity.

We will use empirical examples, primarily involving U.S. macroeconomic indicators and fi-
nancial time series such as GDP, unemployment rates, and stock returns, to illustrate these
concepts.

library(AER)
library(dynlm)
library(forecast)
library(readxl)
library(stargazer)
library(scales)
library(quantmod)
library(urca)

10.1 Data Set Description

The dataset us_macro_quarterly.xlsx contains quarterly data on U.S. real GDP (inflation-
adjusted) from 1947 to 2004.

The first column contains text, while the remaining columns are numeric. We can specify
the column types by using col_types = c("text", rep("numeric", 9)) when reading the
data.

# load US macroeconomic data
USMacroSWQ <- read_xlsx("us_macro_quarterly.xlsx",

sheet = 1,
col_types = c("text", rep("numeric", 9)))

# format date column
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USMacroSWQ$...1 <- as.yearqtr(USMacroSWQ$...1, format = "%Y:0%q")

# adjust column names
colnames(USMacroSWQ) <- c("Date", "GDPC96", "JAPAN_IP", "PCECTPI",

"GS10", "GS1", "TB3MS", "UNRATE", "EXUSUK", "CPIAUCSL")

10.2 Time Series Data and Serial Correlation

Working with time-series objects that track the frequency of the data and are extensible is
useful for an effective time series analysis. We will use objects of the class xts for this purpose,
which have a time-based ordered index. See ?xts.

The data in USMacroSWQ are in quarterly frequency, so we convert the first column to yearqtr
format before generating the xts object GDP.

# GDP series as xts object
GDP <- xts(USMacroSWQ$GDPC96, USMacroSWQ$Date)["1960::2013"]

# GDP growth series as xts object
GDPGrowth <- xts(400 * log(GDP/lag(GDP)))

As with any data analysis, a good starting point is to visualize the data. For this purpose, we
will use the quantmod package, which offers convenient functions for plotting and computing
with time series data.

# GDP in log scale
plot(log(as.zoo(GDP)),

col = "steelblue",
lwd = 2,
ylab = "Logarithm",
xlab = "Date",
main = "U.S. Quarterly Real GDP")

# Growth rate of GDP
plot(as.zoo(GDPGrowth),

col = "steelblue",
lwd = 2,
ylab = "Logarithm",
xlab = "Date",
main = "U.S. Real GDP Growth Rates")
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10.3 Lags, Differences, Logarithms and Growth Rates

For observations of a variable 𝑌 recorded over time, 𝑌𝑡 represents the value observed at time
𝑡. The interval between two consecutive observations, 𝑌𝑡−1 and 𝑌𝑡, defines a unit of time
(e.g. hours, days, weeks, months, quarters or years).

Previous values of a time series are called lags. The first lag of 𝑌𝑡 is 𝑌𝑡−1. The 𝑗𝑡ℎ lag of 𝑌𝑡 is
𝑌𝑡−𝑗. In R, lags of univariate or multivariate time series objects are computed by lag() (see
?lag).

155



It is sometimes convenient to work with a differenced series. The first difference of a series is
Δ𝑌𝑡 = 𝑌𝑡 − 𝑌𝑡−1. For a time series 𝑌 , we compute the series of first differences as diff(Y) in
R.

Since it is common to report growth rates in macroeconomic series, it is convenient to work
with the first difference in logarithms of a series, denoted by Δ log(𝑌𝑡) = log(𝑌𝑡) − log(𝑌𝑡−1).
We can obtain this in R by using log(Y/lag(Y)).

We may additionally approximate the percentage change between 𝑌𝑡 and 𝑌𝑡−1 as
100Δ log(𝑌𝑡).
We can now present the quarterly U.S. GDP time series, its logarithm, the annualized growth
rate and the first lag of the annualized growth rate series for the period 2012:Q1 - 2013:Q1.
The following function quants can be used to compute these quantities for a quarterly time
series.

# compute logarithms, annual growth rates and 1st lag of growth rates
quants <- function(series) {
s <- series
return(

data.frame("Level" = s,
"Logarithm" = log(s),
"AnnualGrowthRate" = 400 * log(s / lag(s)),
"1stLagAnnualGrowthRate" = lag(400 * log(s / lag(s))))

)
}

Since 100Δ log(𝑌𝑡) is an approximation of the quarterly percentage changes, we compute the
annual growth rate using the approximation

AnnualGrowth𝑌𝑡 = 400 ⋅ Δ log(𝑌𝑡)

We may now call quants() on observations for the period 2011:Q3 - 2013:Q1.

# obtain a data.frame with level, logarithm, annual growth rate and its 1st lag of GDP
quants(GDP["2011-07::2013-01"])

Level Logarithm AnnualGrowthRate X1stLagAnnualGrowthRate
2011 Q3 15062.14 9.619940 NA NA
2011 Q4 15242.14 9.631819 4.7518062 NA
2012 Q1 15381.56 9.640925 3.6422231 4.7518062
2012 Q2 15427.67 9.643918 1.1972004 3.6422231
2012 Q3 15533.99 9.650785 2.7470216 1.1972004
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2012 Q4 15539.63 9.651149 0.1452808 2.7470216
2013 Q1 15583.95 9.653997 1.1392015 0.1452808

10.4 Autocorrelation

Observations of a time series are typically correlated. This is called autocorrelation or serial
correlation.

We can compute the first four sample autocorrelations of the series GDPGrowth using acf().

acf(na.omit(GDPGrowth), lag.max = 4, plot = F)

Autocorrelations of series 'na.omit(GDPGrowth)', by lag

0.00 0.25 0.50 0.75 1.00
1.000 0.352 0.273 0.114 0.106

These values suggest a mild positive autocorrelation in GDP growth: when GDP grows faster
than average in one period, it tends to continue growing faster than average in subsequent
periods.

10.5 Additional Examples of Economic Time Series

The book by Stock and Watson (2020, Global Edition) presents four plots in figure 15.2: the
U.S. unemployment rate, the U.S. Dollar / British Pound exchange rate, the logarithm of the
Japanese industrial production index and daily changes in the Wilshire 5000 stock price index,
a financial time series.

To reproduce these plots, we additionally use the data set NYSESW included in the AER package.
We now plot the three macroeconomic series and add percentage changes in the daily values
of the New York Stock Exchange Composite index as a fourth plot.

# define series as xts objects
USUnemp <- xts(USMacroSWQ$UNRATE, USMacroSWQ$Date)["1960::2013"]

DollarPoundFX <- xts(USMacroSWQ$EXUSUK, USMacroSWQ$Date)["1960::2013"]

JPIndProd <- xts(log(USMacroSWQ$JAPAN_IP), USMacroSWQ$Date)["1960::2013"]
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# attach NYSESW data
data("NYSESW")
NYSESW <- xts(Delt(NYSESW))

# divide plotting area into 2x2 matrix
par(mfrow = c(2, 2))

# plot the series
plot(as.zoo(USUnemp),

col = "steelblue",
lwd = 2,
ylab = "Percent",
xlab = "Date",
main = "US Unemployment Rate",
cex.main = 0.8)

plot(as.zoo(DollarPoundFX),
col = "steelblue",
lwd = 2,
ylab = "Dollar per pound",
xlab = "Date",
main = "U.S. Dollar / B. Pound Exchange Rate",
cex.main = 0.8)

plot(as.zoo(JPIndProd),
col = "steelblue",
lwd = 2,
ylab = "Logarithm",
xlab = "Date",
main = "Japanese Industrial Production",
cex.main = 0.8)

plot(as.zoo(NYSESW),
col = "steelblue",
lwd = 2,
ylab = "Percent per Day",
xlab = "Date",
main = "New York Stock Exchange Composite Index",
cex.main = 0.8)

We observe different characteristics in the series:
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• The unemployment rate rises during recessions and falls during periods of economic
recovery and growth.

• The Dollar/Pound exchange rate followed a deterministic pattern until the Bretton
Woods system ended.

• Japan’s industrial production shows an upward trend with diminishing growth.

• Daily changes in the New York Stock Exchange composite index appear to fluctuate
randomly around zero. The sample autocorrelations support this observation.

# compute sample autocorrelation for the NYSESW series
acf(na.omit(NYSESW), plot = F, lag.max = 10)

Autocorrelations of series 'na.omit(NYSESW)', by lag

0 1 2 3 4 5 6 7 8 9 10
1.000 0.040 -0.016 -0.023 0.000 -0.036 -0.027 -0.059 0.013 0.017 0.004

The first 10 sample autocorrelation coefficients are nearly zero. The default plot produced by
acf() offers additional confirmation.

# plot sample autocorrelation for the NYSESW series
acf(na.omit(NYSESW), main = "Sample Autocorrelation for NYSESW Data")
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The blue dashed bands represent values beyond which the autocorrelations are significantly
different from zero at 5% level. For most lags, the sample autocorrelation remains within the
bands, with only a few instances slightly exceeding the limits.

Additionally, the NYSESW series show volatility clustering, characterized by periods of high
and low variance. This pattern is typically observed in many financial time series.

10.6 Autoregressions

10.6.1 The First-Order Autoregressive Model

The simplest autoregressive model uses only the most recent outcome of the time series ob-
served to predict future values. For a time series 𝑌𝑡, this model is known as a first-order
autoregressive model, commonly abbreviated as AR(1).

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝑢𝑡

is the AR(1) population model of a time series 𝑌𝑡.

The first-order autoregression model of GDP growth can be estimated by computing OLS
estimates in the regression of 𝐺𝐷𝑃𝐺𝑅𝑡 on 𝐺𝐷𝑃𝐺𝑅𝑡−1

̂𝐺𝐷𝑃𝐺𝑅𝑡 = ̂𝛽0 + ̂𝛽1𝐺𝐷𝑃𝐺𝑅𝑡−1
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To estimate this regression model, we use data from 1962 to 2012 and we use ar.ols() from
the package stats.

# subset data
GDPGRSub <- GDPGrowth["1962::2012"]

# estimate the model
ar.ols(GDPGRSub,

order.max = 1,
demean = F,
intercept = T)

Call:
ar.ols(x = GDPGRSub, order.max = 1, demean = F, intercept = T)

Coefficients:
1

0.3384

Intercept: 1.995 (0.2993)

Order selected 1 sigma^2 estimated as 9.886

We see that the computations done by ar.ols() are the same as done by lm().

# length of data set
N <-length(GDPGRSub)

GDPGR_level <- as.numeric(GDPGRSub[-1])
GDPGR_lags <- as.numeric(GDPGRSub[-N])

# estimate the model
armod <- lm(GDPGR_level ~ GDPGR_lags)
armod

Call:
lm(formula = GDPGR_level ~ GDPGR_lags)

Coefficients:
(Intercept) GDPGR_lags

1.9950 0.3384
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We obtain a robust summary on the estimated regression coefficients as usual with
coeftest().

# robust summary
coeftest(armod, vcov. = vcovHC, type = "HC1")

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.994986 0.351274 5.6793 4.691e-08 ***
GDPGR_lags 0.338436 0.076188 4.4421 1.470e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated regression model is

̂𝐺𝐷𝑃𝐺𝑅𝑡 = 1.995
(0.351)

+ 0.338
(0.076)

𝐺𝐷𝑃𝐺𝑅𝑡−1.

We omit the first observation for 𝐺𝐷𝑃𝐺𝑅1962𝑄1 from the vector of the dependent variable
since 𝐺𝐷𝑃𝐺𝑅1962𝑄1−1 = 𝐺𝐷𝑃𝐺𝑅1961𝑄4 is not included in the sample. Similarly, the last
observation, 𝐺𝐷𝑃𝐺𝑅2012𝑄4 is excluded from the predictor vector since the data does not
include 𝐺𝐷𝑃𝐺𝑅2012𝑄4+1 = 𝐺𝐷𝑃𝐺𝑅2013𝑄1.

Put differently, when estimating the model, one observation is lost because of the time series
structure of the data.

10.6.2 Forecasts and Forecast Errors

When 𝑌𝑡 follows an AR(1) model with an intercept and we have an OLS estimate of the model
on the basis of observations for 𝑇 periods, then we may use the AR(1) model to obtain 𝑌𝑇+1|𝑇 ,
a forecast for 𝑌𝑇+1 using data up to period 𝑇 , where

𝑌𝑇+1|𝑇 = ̂𝛽0 + ̂𝛽1𝑌𝑇 .

The forecast error is then
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Forecast error = 𝑌𝑇+1 − 𝑌𝑇+1|𝑇

10.6.3 Forecasts and Forecasted Values

Forecasted values of 𝑌𝑡 are different from what we call OLS predicted values of 𝑌𝑡. Additionally,
the forecast error differs from an OLS residual. Forecasts and forecast errors are derived using
out-of-sample data, whereas predicted values and residuals are calculated using in-sample data
that has been observed.

The root mean squared forecast error (RMSFE) quantifies the typical magnitude of the forecast
error and is defined as

RMSFE = √𝐸 [(𝑌𝑇+1 − 𝑌𝑇+1|𝑇)
2]

The RMSFE consists of future errors 𝑢𝑡 and the error derived from estimating the coefficients.
When the sample size is large, the future errors often dominate, making RMSFE approximately
equal to √Var(𝑢𝑡), which can be estimated by the standard error of the regression.

10.6.4 Application to GDP Growth

Using the estimated AR(1) model of GDP growth, we can perform the forecast for the GDP
growth for the first quarter of 2013. Since we estimated the model using data from 1962:Q1
to 2012:Q4, 2013:Q1 is an out-of-sample period.

Substituting 𝐺𝐷𝑃𝐺𝑅2012𝑄4 ≈ 0.15 into the equation, we obtain:

̂𝐺𝐷𝑃𝐺𝑅2013∶𝑄1 = 1.995 + 0.348 ⋅ 0.15 = 2.047

The forecast() function from the forecast package provides useful features for making time
series predictions.
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# assign GDP growth rate in 2012:Q4
new <- data.frame("GDPGR_lags" = GDPGR_level[N-1])

# forecast GDP growth rate in 2013:Q1
forecast(armod, newdata = new)

Point Forecast Lo 80 Hi 80 Lo 95 Hi 95
1 2.044155 -2.036225 6.124534 -4.213414 8.301723

We observe the same point forecast of approximately 2.0, together with the 80% and 95%
forecast intervals.

We conclude that the AR(1) model predicts the GDP growth to be 2% in 2013:Q1.

But how reliable is this forecast? The forecast error is substantial: 𝐺𝐷𝑃𝐺𝑅2013𝑄1 ≈ 1.1%,
while our prediction is 2%. Additionally, using summary(armod) reveals that the model ac-
counts for only a small portion of the GDP growth rate variation, with the SER around 3.16.
Ignoring the forecast uncertainty from estimating coefficients 𝛽0 and 𝛽1, the RMSFE should
be at least 3.16%, which is the estimated standard deviation of the errors. Thus, we conclude
that this forecast is quite inaccurate.

# compute the forecast error
forecast(armod, newdata = new)$mean - GDPGrowth["2013"][1]

x
2013 Q1 0.9049532

# R^2
summary(armod)$r.squared

[1] 0.1149576

# SER
summary(armod)$sigma

[1] 3.15979
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10.6.5 Autoregressive Models of Order 𝑝

The AR(1) model only considers information from the most recent period to forecast GDP
growth. In contrast, an AR(𝑝) model includes information from the past 𝑝 lags of the series.

An AR(𝑝) model assumes that a time series 𝑌𝑡 can be modeled by a linear function of the first
𝑝 of its lagged values.

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 +⋯+ 𝛽𝑝𝑌𝑡−𝑝 + 𝑢𝑡

is an autoregressive model of order 𝑝 where 𝐸(𝑢𝑡 ∣ 𝑌𝑡−1, 𝑌𝑡−2,… , 𝑌𝑡−𝑝) = 0.
Let’s estimate an AR(2) model of the GDP growth series from 1962:Q1 to 2012:Q4.

# estimate the AR(2) model
GDPGR_AR2 <- dynlm(ts(GDPGR_level) ~ L(ts(GDPGR_level)) + L(ts(GDPGR_level), 2))

coeftest(GDPGR_AR2, vcov. = sandwich)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.631747 0.402023 4.0588 7.096e-05 ***
L(ts(GDPGR_level)) 0.277787 0.079250 3.5052 0.0005643 ***
L(ts(GDPGR_level), 2) 0.179269 0.079951 2.2422 0.0260560 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain

̂𝐺𝐷𝑃𝐺𝑅𝑡 = 1.63
(0.40)

+ 0.28
(0.08)

𝐺𝐷𝑃𝐺𝑅𝑡−1 + 0.18
(0.08)

𝐺𝐷𝑃𝐺𝑅𝑡−2

We see that the coefficient on the second lag is significantly different from zero at the 5% level.
Compared to the AR(1) model, the fit shows a slight improvement: �̄�2 increases from 0.11 in
the AR(1) model to about 0.14 in the AR(2), and the 𝑆𝐸𝑅 decreases to 3.13.

# R^2
summary(GDPGR_AR2)$r.squared

[1] 0.1425484
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# SER
summary(GDPGR_AR2)$sigma

[1] 3.132122

We can use the AR(2) model to forecast GDP growth for 2013 in the same way as we did with
the AR(1) model.

# AR(2) forecast of GDP growth in 2013:Q1
forecast <- c("2013:Q1" = coef(GDPGR_AR2) %*% c(1, GDPGR_level[N-1],

GDPGR_level[N-2]))
forecast

2013:Q1
2.16456

The forecast error is approximately −1%.

# compute AR(2) forecast error
GDPGrowth["2013"][1] - forecast

x
2013 Q1 -1.025358

10.7 Additional Predictors and The ADL Model

An autoregressive distributed lag (ADL) model is called autoregressive because it includes
lagged values of the dependent variable as regressors (similar to an autoregression), but it’s also
termed a distributed lag model because the regression incorporates multiple lags (a “distributed
lag”) of an additional predictor.

The autoregressive distributed lag model with 𝑝 lags of 𝑌𝑡 and 𝑞 lags of 𝑋𝑡, denoted ADL(𝑝, 𝑞),
is

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 +⋯+ 𝛽𝑝𝑌𝑡−𝑝
+ 𝛿1𝑋𝑡−1 + 𝛿2𝑋𝑡−2 +⋯+ 𝛿𝑞𝑋𝑡−𝑞 + 𝑢𝑡

166



where 𝛽0, 𝛽1,… , 𝛽𝑝, 𝛿1,… , 𝛿𝑞, are unknown coefficients and 𝑢𝑡 is the error term with 𝐸(𝑢𝑡 ∣
𝑌𝑡−1, 𝑌𝑡−2,… ,𝑋𝑡−1, 𝑋𝑡−2,…) = 0.

10.7.1 Forecasting GDP Growth Using the Term Spread

Interest rates on long-term and short-term treasury bonds are closely tied to macroeconomic
conditions. Although both types of bonds share similar long-term trends, their short-term
behaviors differ significantly. The disparity in interest rates between two bonds with different
maturities is known as the term spread.

Figure 15.3 of the book by Stock and Watson (2020, Global Edition) displays interest rates of
10-year U.S. Treasury bonds and 3-month U.S. Treasury bills from 1960 to 2012. The following
code chunks reproduce this figure.

# 3-month Treasury bills interest rate
TB3MS <- xts(USMacroSWQ$TB3MS, USMacroSWQ$Date)["1960::2012"]

# 10-year Treasury bonds interest rate
TB10YS <- xts(USMacroSWQ$GS10, USMacroSWQ$Date)["1960::2012"]

# term spread
TSpread <- TB10YS - TB3MS

# reproduce Figure 15.3 (a) of the book
plot(merge(as.zoo(TB3MS), as.zoo(TB10YS)),

plot.type = "single",
col = c("darkred", "steelblue"),
lwd = 2,
xlab = "Date",
ylab = "Percent per annum",
main = "10-year and 3-month Interest Rates")

# define function that transform years to class 'yearqtr'
YToYQTR <- function(years) {
return(

sort(as.yearqtr(sapply(years, paste, c("Q1", "Q2", "Q3", "Q4"))))
)

}
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# recessions
recessions <- YToYQTR(c(1961:1962, 1970, 1974:1975, 1980:1982, 1990:1991, 2001,

2007:2008))

# add color shading for recessions
xblocks(time(as.zoo(TB3MS)),

c(time(TB3MS) %in% recessions),
col = alpha("steelblue", alpha = 0.3))

# add a legend
legend("topright",

legend = c("TB3MS", "TB10YS"),
col = c("darkred", "steelblue"),
lwd = c(2, 2))
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# reproduce Figure 15.3 (b) of the book
plot(as.zoo(TSpread),

col = "steelblue",
lwd = 2,
xlab = "Date",
ylab = "Percent per annum",
main = "Term Spread")

# add color shading for recessions
xblocks(time(as.zoo(TB3MS)),
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c(time(TB3MS) %in% recessions),
col = alpha("steelblue", alpha = 0.3))
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Before recessions, the gap between interest rates on long-term bonds and short-term bills nar-
rows, causing the term spread to decline significantly, sometimes even turning negative during
economic stress. This information can be used to improve future GDP growth forecasts.

We can verify this by estimating an ADL(2, 1) model and an ADL(2, 2) model of the GDP
growth rate, using lags of GDP growth and lags of the term spread as regressors. Then we use
both models to forecast GDP growth for 2013.

# convert growth and spread series to ts objects
GDPGrowth_ts <- ts(GDPGrowth,

start = c(1960, 1),
end = c(2013, 4),
frequency = 4)

TSpread_ts <- ts(TSpread,
start = c(1960, 1),
end = c(2012, 4),
frequency = 4)

# join both ts objects
ADLdata <- ts.union(GDPGrowth_ts, TSpread_ts)
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# estimate the ADL(2,1) model of GDP growth
GDPGR_ADL21 <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) +

L(TSpread_ts), start = c(1962, 1), end = c(2012, 4))

coeftest(GDPGR_ADL21, vcov. = sandwich)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.954990 0.486976 1.9611 0.051260 .
L(GDPGrowth_ts) 0.267729 0.082562 3.2428 0.001387 **
L(GDPGrowth_ts, 2) 0.192370 0.077683 2.4763 0.014104 *
L(TSpread_ts) 0.444047 0.182637 2.4313 0.015925 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

We obtain for ADL (2, 1) the following equation

̂𝐺𝐷𝑃𝐺𝑅𝑡 = 0.96
(0.49)

+ 0.26
(0.08)

𝐺𝐷𝑃𝐺𝑅𝑡−1 + 0.19
(0.08)

𝐺𝐷𝑃𝐺𝑅𝑡−2 + 0.44
(0.18)

𝑇𝑆𝑝𝑟𝑒𝑎𝑑𝑡−1

with all coefficients significant at the 5% level.

Let’s now predict the GDP growth for 2013:Q1 and compute the forecast error.

# 2012:Q3 / 2012:Q4 data on GDP growth and term spread
subset <- window(ADLdata, c(2012, 3), c(2012, 4))

# ADL(2,1) GDP growth forecast for 2013:Q1
ADL21_forecast <- coef(GDPGR_ADL21) %*% c(1, subset[2, 1], subset[1, 1],

subset[2, 2])
ADL21_forecast

[,1]
[1,] 2.241689

# compute the forecast error
window(GDPGrowth_ts, c(2013, 1), c(2013, 1)) - ADL21_forecast
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Qtr1
2013 -1.102487

The ADL(2, 1) model predicts the GDP growth in 2013:Q1 to be 2.24%, which leads to a
forecast error of −1.10%.

We now estimate the ADL(2, 2) model to determine if incorporating additional information
from past term spreads enhances the forecast.

# estimate the ADL(2,2) model of GDP growth
GDPGR_ADL22 <- dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2)

+ L(TSpread_ts) + L(TSpread_ts, 2),
start = c(1962, 1), end = c(2012, 4))

coeftest(GDPGR_ADL22, vcov. = sandwich)

t test of coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.967967 0.472470 2.0487 0.041800 *
L(GDPGrowth_ts) 0.243175 0.077836 3.1242 0.002049 **
L(GDPGrowth_ts, 2) 0.177070 0.077027 2.2988 0.022555 *
L(TSpread_ts) -0.139554 0.422162 -0.3306 0.741317
L(TSpread_ts, 2) 0.656347 0.429802 1.5271 0.128326
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The estimated AR(2, 2) model equation is

̂𝐺𝐷𝑃𝐺𝑅𝑡 = 0.98
(0.47)

+ 0.24
(0.08)

𝐺𝐷𝑃𝐺𝑅𝑡−1 + 0.18
(0.08)

𝐺𝐷𝑃𝐺𝑅𝑡−2

− 0.14
(0.42)

𝑇𝑆𝑝𝑟𝑒𝑎𝑑𝑡−1 + 0.66
(0.43)

𝑇𝑆𝑝𝑟𝑒𝑎𝑑𝑡−2

While the coefficients on the lagged growth rates are still significant, the coefficients on both
lags of the term spread are not significant at the 10% level.

# ADL(2,2) GDP growth forecast for 2013:Q1
ADL22_forecast <- coef(GDPGR_ADL22) %*% c(1, subset[2, 1], subset[1, 1],

subset[2, 2], subset[1, 2])
ADL22_forecast
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[,1]
[1,] 2.274407

# compute the forecast error
window(GDPGrowth_ts, c(2013, 1), c(2013, 1)) - ADL22_forecast

Qtr1
2013 -1.135206

The ADL(2, 2) model forecasts a GDP growth of 2.27% for 2013:Q1, which implies a forecast
error of −1.14%.

Are ADL(2, 1) and ADL(2, 2) models better than the simple AR(2) model? Yes, while 𝑆𝐸𝑅
and �̄�2 improve only slightly, an 𝐹 -test on the term spread coefficients in the ADL(2, 2) model
provides evidence that the model does better in explaining GDP growth than the AR(2) model,
as the hypothesis that both coefficients are zero can be rejected at the 5% level.

# compare adj. R2
c("Adj.R2 AR(2)" = summary(GDPGR_AR2)$adj.r.squared,
"Adj.R2 ADL(2,1)" = summary(GDPGR_ADL21)$adj.r.squared,
"Adj.R2 ADL(2,2)" = summary(GDPGR_ADL22)$adj.r.squared)

Adj.R2 AR(2) Adj.R2 ADL(2,1) Adj.R2 ADL(2,2)
0.1338873 0.1620156 0.1691531

# compare SER
c("SER AR(2)" = summary(GDPGR_AR2)$sigma,
"SER ADL(2,1)" = summary(GDPGR_ADL21)$sigma,
"SER ADL(2,2)" = summary(GDPGR_ADL22)$sigma)

SER AR(2) SER ADL(2,1) SER ADL(2,2)
3.132122 3.070760 3.057655

# F-test on coefficients of term spread
linearHypothesis(GDPGR_ADL22,

c("L(TSpread_ts)=0", "L(TSpread_ts, 2)=0"),
vcov. = sandwich)
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Linear hypothesis test

Hypothesis:
L(TSpread_ts) = 0
L(TSpread_ts, 2) = 0

Model 1: restricted model
Model 2: GDPGrowth_ts ~ L(GDPGrowth_ts) + L(GDPGrowth_ts, 2) + L(TSpread_ts) +

L(TSpread_ts, 2)

Note: Coefficient covariance matrix supplied.

Res.Df Df F Pr(>F)
1 201
2 199 2 4.4344 0.01306 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

10.7.2 Stationarity

Time series forecasts rely on past data to predict future values, assuming that the correlations
and distributions of the data will remain consistent over time. This assumption is formalized
by the concept of stationarity.

A time series 𝑌𝑡 is stationary if its probability distribution does not change over time - that is,
if the joint distribution of (𝑌𝑠+1, 𝑌𝑠+2,… , 𝑌𝑠+𝑇 ) does not depend on 𝑠, regardless of the value
of 𝑇 ; otherwise, 𝑌𝑡 is said to be nonstationary.

Similarly, a pair of time series, 𝑋𝑡 and 𝑌𝑡, are said to be jointly stationary if the joint distribu-
tion of (𝑋𝑠+1, 𝑌𝑠+1, 𝑋𝑠+2, 𝑌𝑠+2,… ,𝑋𝑠+𝑇 , 𝑌𝑠+𝑇 ) does not depend on 𝑠, regardless of the value
of 𝑇 .

10.7.3 Time Series Regression with Multiple Predictors

The general time series regression model extends the ADL model to include multiple regressors
and their lags. It incorporates 𝑝 lags of the dependent variable and 𝑞𝑙 lags of 𝑙 additional
predictors where 𝑙 = 1,… , 𝑘:
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𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛽2𝑌𝑡−2 +⋯+ 𝛽𝑝𝑌𝑡−𝑝
+ 𝛿11𝑋1,𝑡−1 + 𝛿12𝑋1,𝑡−2 +⋯+ 𝛿1𝑞𝑋1,𝑡−𝑞
+⋯
+ 𝛿𝑘1𝑋𝑘,𝑡−1 + 𝛿𝑘2𝑋𝑘,𝑡−2 +⋯+ 𝛿𝑘𝑞𝑋𝑘,𝑡−𝑞
+ 𝑢𝑡.

The following assumptions are made for estimation:

1. The error term 𝑢𝑡 has conditional mean zero given all regressors and their lags:

𝐸(𝑢𝑡 ∣ 𝑌𝑡−1, 𝑌𝑡−2,… ,𝑋1,𝑡−1, 𝑋1,𝑡−2,… ,𝑋𝑘,𝑡−1, 𝑋𝑘,𝑡−2,…)

This assumption extends the conditional mean zero assumption used for AR and ADL models
and ensures that the general time series regression model described above provides the optimal
forecast of 𝑌𝑡 given its lags, the additional regressors 𝑋1,𝑡,… ,𝑋𝑘,𝑡, and their lags.

2. The i.i.d. assumption for cross-sectional data is not entirely applicable to time series
data. Instead, we replace it with the following assumption, which has two components:

a. The (𝑌𝑡, 𝑋1,𝑡,… ,𝑋𝑘,𝑡) have a stationary distribution (the “identically distributed”
part of the i.i.d. assumption for cross-sectional data). If this condition does not
hold, forecasts may be biased and inference can be significantly misleading.

b. The (𝑌𝑡, 𝑋1,𝑡,… ,𝑋𝑘,𝑡) and (𝑌𝑡−𝑗, 𝑋1,𝑡−𝑗,… ,𝑋𝑘,𝑡−𝑗) become independent as 𝑗 be-
comes large (the “independently” distributed part of the i.i.d. assumption for cross-
sectional data). This assumption is also referred to as weak dependence and ensures
that the WLLN and the CLT hold in large samples.

3. Large outliers are unlikely: 𝐸(𝑋4
1,𝑡), 𝐸(𝑋4

2,𝑡),… ,𝐸(𝑋4
𝑘,𝑡) and 𝐸(𝑌 4

𝑡 ) have nonzero, finite
fourth moments.

4. No perfect multicollinearity.

Given the nonstationary nature observed in many economic time series, assumption two plays
a crucial role in applied macroeconomics and finance, leading to the development of statistical
tests designed to determine stationarity or nonstationarity that will be explained later.
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10.7.4 Statistical Inference and the Granger Causality Test

If 𝑋 serves as a valuable predictor for 𝑌 , then in a regression where 𝑌𝑡 is regressed on its
own lags and lags of 𝑋𝑡, some coefficients on the lags of 𝑋𝑡 are expected to be non-zero. This
concept is known as Granger causality and presents an interesting hypothesis for testing.

The Granger causality test is an 𝐹 -test of the null hypothesis that all lags of a variable 𝑋
included in a time series regression model do not have predictive power for 𝑌𝑡. It does not
test whether 𝑋 actually causes 𝑌 , but whether the included lags are informative in terms of
predicting 𝑌 .

This is the test we have previously performed on the ADL(2, 2) model of GDP growth and we
concluded that at least one of the first two lags of term spread has predictive power for GDP
growth.

10.8 Forecast Uncertainty and Forecast Intervals

It is typically good practice to include a measure of uncertainty when presenting results affected
by it. Uncertainty becomes especially important in the context of time series forecasting.

For instance, consider a basic ADL(1, 1) model

𝑌𝑡 = 𝛽0 + 𝛽1𝑌𝑡−1 + 𝛿1𝑋𝑡−1 + 𝑢𝑡,

where 𝑢𝑡 is a homoskedastic error term. The forecast error is then

𝑌𝑇+1 − 𝑌𝑇+1∣𝑇 = 𝑢𝑇+1 − [( ̂𝛽0 − 𝛽0) + ( ̂𝛽1 − 𝛽1)𝑌𝑇 + (𝛿1 − 𝛿1)𝑋𝑇 ]

The mean squared forecast error (MSFE) and the RMSFE are

𝑀𝑆𝐹𝐸 = 𝐸 [(𝑌𝑇+1 − 𝑌𝑇+1∣𝑇 )2]
= 𝜎2

𝑢 + 𝑉 𝑎𝑟 [( ̂𝛽0 − 𝛽0) + ( ̂𝛽1 − 𝛽1)𝑌𝑇 + ( ̂𝛿1 − 𝛿1)𝑋𝑇 ] ,

𝑅𝑀𝑆𝐸 = √𝜎2𝑢 +Var [( ̂𝛽0 − 𝛽0) + ( ̂𝛽1 − 𝛽1)𝑌𝑇 + ( ̂𝛿1 − 𝛿1)𝑋𝑇 ].

A 95% forecast interval is an interval that, in 95% of repeated applications, includes the true
value of 𝑌𝑇+1.
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There is a fundamental distinction between computing a confidence interval and a forecast
interval. When deriving a confidence interval for a point estimate, we use large sample ap-
proximations justified by the Central Limit Theorem (CLT), and these are valid across a broad
range of error term distributions.

On the other hand, to compute a forecast interval for 𝑌𝑇+1, an additional assumption about
the distribution of 𝑢𝑇+1, the error term in period 𝑇 + 1, is necessary.
Assuming that 𝑢𝑇+1 follows a normal distribution, it is possible to create a 95% forecast
interval for 𝑌𝑇+1 using 𝑆𝐸(𝑌𝑇+1 − ̂𝑌𝑇+1|𝑇 ), which represents an estimate of the Root Mean
Squared Forecast Error (RMSFE).

̂𝑌𝑇+1|𝑇 ± 1.96 ⋅ 𝑆𝐸(𝑌𝑇+1 − ̂𝑌𝑇+1|𝑇 )

Nevertheless, the computation gets more complicated when the error term is heteroskedastic
or if we are interested in computing a forecast interval for 𝑇 + 𝑠 when 𝑠 > 1.
In some cases it is useful to report multiple forecast intervals for subsequent periods. To
ilustrate an example, we will use simulated time series data and estimate an AR(2) model
which is then used for forecasting the subsequent 25 future outcomes of the series.

# set seed
set.seed(1234)

# simulate the time series
Y <- arima.sim(list(order = c(2, 0, 0), ar = c(0.2, 0.2)), n = 200)

# estimate an AR(2) model using 'arima()', see ?arima
model <- arima(Y, order = c(2, 0, 0))

# compute points forecasts and prediction intervals for the next 25 periods
fc <- forecast(model, h = 25, level = seq(5, 99, 10))

# plot a fan chart
plot(fc,

main = "Forecast Fan Chart for AR(2) Model of Simulated Data",
showgap = F,
fcol = "red",
flty = 2)

arima.sim() simulates autoregressive integrated moving average (ARIMA) models. These are
the class of models AR models belong to.
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Forecast Fan Chart for AR(2) Model of Simulated Data
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We use list(order = c(2, 0, 0), ar = c(0.2, 0.2)) so the data generating process
(DGP) is

𝑌𝑡 = 0.2𝑌𝑡−1 + 0.2𝑌𝑡−2 + 𝑢𝑡.

We choose level = seq(5, 99, 10) in the call of forecast() so that forecast intervals with
levels 5%, 15%,… , 95% are computed for each point forecast of the series.

The dashed red line displays the series’ point forecasts for the next 25 periods using an AR(2)
model, while the shaded areas represent prediction intervals.

The shading intensity corresponds to the interval’s level, with the darkest blue band represent-
ing the 5% forecast intervals, gradually fading to grey with higher interval levels.

10.9 Lag Length Selection using Information Criteria

The determination of lag lengths in AR and ADL models may be influenced by economic
theory, yet statistical techniques are useful in selecting the appropriate number of lags as
regressors.

Including too many lags typically inflates the standard errors of coefficient estimates, leading
to increased forecast errors, whereas omitting essential lags can introduce estimation biases
into the model.

The order of an AR model can be determined using two approaches:

1. The F-test approach
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Estimate an AR(𝑝) model and test the significance of its largest lag(s). If statistical tests
suggest that certain lag(s) are not significant, we may consider removing them from the model.
However, this method often leads to overfitting, as significance tests can sometimes incorrectly
reject a true null hypothesis.

2. Relying on an information criterion

To avoid the problem of overly complex models, one can select the lag order that minimizes
one of the following two information criteria:

• The Bayes Information Criterion (BIC):

𝐵𝐼𝐶(𝑝) = log(𝑆𝑆𝑅(𝑝)
𝑇 ) + (𝑝 + 1) log(𝑇 )

𝑇
• The Akaike Information Criterion (AIC):

𝐴𝐼𝐶(𝑝) = log(𝑆𝑆𝑅(𝑝)
𝑇 ) + (𝑝 + 1) 2𝑇

Both criteria are estimators of the optimal lag length 𝑝. The lag order ̂𝑝 that minimizes
the respective criterion is called the BIC estimate or the AIC estimate of the optimal model
order.

The basic idea of both criteria is that the 𝑆𝑆𝑅 decreases as additional lags are added to the
model, such that the first term decreases whereas the second increases as the lag order grows.

BIC decreases because of its logarithmic penalty term, while AIC’s penalty term is less severe.
BIC is consistent in estimating the true lag order, whereas AIC’s consistency is less assured
due to its different penalty factor.

Despite this, both criteria are commonly employed, with AIC sometimes favored when BIC
suggests a model with too few lags.

The dynlm() function does not compute information criteria by default. Hence, we will create
a custom function to calculate and display the Bayesian Information Criterion (BIC), alongside
the selected lag order 𝑝 and the adjusted �̄�2, for objects of class dynlm.

# compute BIC for AR model objects of class 'dynlm'
BIC <- function(model) {

ssr <- sum(model$residuals^2)
t <- length(model$residuals)
npar <- length(model$coef)
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return(
round(c("p" = npar - 1,

"BIC" = log(ssr/t) + npar * log(t)/t,
"Adj.R2" = summary(model)$adj.r.squared), 4)

)
}

The following code computes the Bayesian Information Criterion (BIC) for autoregressive (AR)
models of GDP growth with orders 𝑝 = 1,… , 6.
sapply() function is used to apply the BIC calculation to each model and display the results,
including the BIC values and the adjusted �̄�2 for each order. This allows for a comparison of
model fit across different lag lengths.

# apply the BIC() to an intercept-only model of GDP growth
BIC(dynlm(ts(GDPGR_level) ~ 1))

p BIC Adj.R2
0.0000 2.4394 0.0000

# loop BIC over models of different orders
order <- 1:6

BICs <- sapply(order, function(x)
"AR" = BIC(dynlm(ts(GDPGR_level) ~ L(ts(GDPGR_level), 1:x))))

BICs

[,1] [,2] [,3] [,4] [,5] [,6]
p 1.0000 2.0000 3.0000 4.0000 5.0000 6.0000
BIC 2.3486 2.3475 2.3774 2.4034 2.4188 2.4429
Adj.R2 0.1099 0.1339 0.1303 0.1303 0.1385 0.1325

Increasing the lag order tends to increase 𝑅2 because adding more lags generally reduces the
sum of squared residuals 𝑆𝑆𝑅. However, �̄�2 adjusts for the number of parameters in the
model, mitigating the inflation of 𝑅2 due to additional variables.

Despite �̄�2 considerations, according to the BIC criterion, opting for the AR(2) model over
the AR(5) model is recommended. The BIC helps in assessing whether the reduction in 𝑆𝑆𝑅
justifies the inclusion of an additional regressor.

If we had to compare a bigger set of models, we may use the function which.min() to select
the model with the lowest 𝐵𝐼𝐶.

179



# select the AR model with the smallest BIC
BICs[, which.min(BICs[2, ])]

p BIC Adj.R2
2.0000 2.3475 0.1339

The 𝐵𝐼𝐶 may also be used to select lag lengths in time series regression models with multiple
predictors. In a model with 𝐾 coefficients, including the intercept, we have

BIC(𝐾) = log(𝑆𝑆𝑅(𝐾)
𝑇 ) +𝐾 log(𝑇 )

𝑇 .

Choosing the optimal model according to the 𝐵𝐼𝐶 can be computationally demanding, since
there may be many different combinations of lag lengths when there are multiple predictors.

As an example, we estimate ADL(𝑝, 𝑞) models of GDP growth, incorporating the term spread
between short-term and long-term bonds as an additional variable.

We impose the constraint 𝑝 = 𝑞1 = … = 𝑞𝑘 so that only a maximum of 𝑝max models (𝑝 =
1,… , 𝑝max) need to be estimated. In the example below, we set 𝑝max = 12.

# loop 'BIC()' over multiple ADL models
order <- 1:12

BICs <- sapply(order, function(x)
BIC(dynlm(GDPGrowth_ts ~ L(GDPGrowth_ts, 1:x) + L(TSpread_ts, 1:x),

start = c(1962, 1), end = c(2012, 4))))

BICs

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9]
p 2.0000 4.0000 6.0000 8.0000 10.0000 12.0000 14.0000 16.0000 18.0000
BIC 2.3411 2.3408 2.3813 2.4181 2.4568 2.5048 2.5539 2.6029 2.6182
Adj.R2 0.1332 0.1692 0.1704 0.1747 0.1773 0.1721 0.1659 0.1586 0.1852

[,10] [,11] [,12]
p 20.0000 22.0000 24.0000
BIC 2.6646 2.7205 2.7664
Adj.R2 0.1864 0.1795 0.1810

According to the definition of BIC(), for ADL models where 𝑝 = 𝑞, 𝑝 represents the count
of estimated coefficients excluding the intercept. Consequently, the lag order is derived by
dividing 𝑝 by 2.
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# select the ADL model with the smallest BIC
BICs[, which.min(BICs[2, ])]

p BIC Adj.R2
4.0000 2.3408 0.1692

The 𝐵𝐼𝐶 favors the previously estimated ADL(2, 2) model.
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Part II

Empirical Methods 2023
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11 Basic Principles

11.1 The frequentist approach

Observations are generated by a data generating process

Probabilistic model:
(𝑋𝑖
𝑌𝑖

) ∼ 𝐹𝑥𝑦(𝜃)

For example 𝐹𝑥𝑦(𝜃) represents 𝑁(,Σ) (joint normal)

If the conditional distribution is linear in 𝑋, we have

𝔼(𝑌𝑖|𝑋𝑖) = 𝛼 + 𝛽𝑋𝑖

where Proof

𝛼 = 𝔼(𝑌𝑖) − 𝛽 𝔼(𝑋𝑖)

𝛽 = 𝔼(𝑋𝑖𝑌𝑖) − 𝔼(𝑋𝑖)𝔼(𝑌𝑖)
𝔼(𝑋2

𝑖 ) − [𝔼(𝑋𝑖)]2
= 𝑐𝑜𝑣(𝑌𝑖, 𝑋𝑖)

𝑣𝑎𝑟(𝑋𝑖)

The OLS estimator can be seen as replacing the population moments by the sample moments

The conditional expectation answers the question: What is the expected value of 𝑌𝑖 if we
were able to fix 𝑋𝑖 at some prespecified value 𝑋𝑖 = 𝑥?
The parameters of interest 𝜃 = (𝛼, 𝛽)′ result as a function of the joint distribution of 𝑋𝑖 and
𝑌𝑖, that is,

𝜃 = 𝑡(𝑋𝑖, 𝑌𝑖)

where ̂𝜃 denotes the estimated analog based on the available sample

The accuracy of the estimate is measured by
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bias = 𝔼( ̂𝜃) − 𝜃 (systematic deviation)

var = 𝔼{[ ̂𝜃 − 𝔼(𝜃)]
2
} (unsystematic deviation)

MSE = 𝔼[( ̂𝜃 − 𝜃)2] = bias2 + var (total deviation)

The frequentist notion refers to “an infinite sequence of future trials”.

11.1.1 Estimation principles

a) Plug-in principle Replace 𝑡(𝑋𝑖, 𝑌𝑖) by its sample analogs:

𝑠𝑥𝑦 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)(𝑦𝑖 − ̄𝑦)

𝑠2𝑥 = 1
𝑛

𝑛
∑
𝑖=1

(𝑥𝑖 − ̄𝑥)2

and compute the estimator as 𝑏 = 𝑠𝑥𝑦/𝑠2𝑥
This often yields “optimal” estimators, but not always Accurrency measures and hypothesis
tests can be obtained from the bootstrap principle

b) Maximum Likelihood

Joint density:

𝑓𝜃(𝑋𝑖, 𝑌𝑖) = 𝑓𝜃1
(𝑌𝑖|𝑋𝑖)𝑓𝜃2

(𝑋𝑖)

Maximizing the log-likelihood function:

ℓ(𝜃|𝑋𝑖, 𝑌𝑖) = log 𝑓(𝑋𝑖, 𝑌𝑖) = log 𝑓𝜃1
(𝑌𝑖|𝑋𝑖)+ log 𝑓𝜃2

(𝑋𝑖)

if 𝜃1 is independent of 𝜃2 we may maximize the conditional log-likelihood function:

ℓ𝑐(𝜃1|𝑋𝑖, 𝑌𝑖) = log 𝑓𝜃1
(𝑌𝑖|𝑋𝑖)
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where in a simple regression: 𝜃1 = (𝛼, 𝛽, 𝜎2)
Problem: the (family of) distribution needs to be known

Often some “natural” distribution is supposed, e.g. normal (Gaussian) distribution

ML estimators have optimal properties: - ML estimators are (asymptotically) unbiased - ML
estimators are (asymptotically) efficient - ML estimators are (asymptotically) normally dis-
tributed

11.1.2 Further properties of ML estimators

• Consistency of the ML estimator just requires: 𝐸[𝐷(𝜃)] = 0 where

𝐷(𝜃) = 𝜕ℓ(𝜃)
𝜕𝜃

If the likelihood is misspecified but this condition is nevertheless fulfilled, then the estimator
is called “pseudo ML”

• For large N and correctly specified likelihood the covariance matrix can be estimated by
the information matrix

var( ̂𝜃) = 𝐼(𝜃)−1 where 𝐼(𝜃) = −𝐸 [𝜕
2ℓ(𝜃)

𝜕𝜃𝜕𝜃′ ] = 𝐸[𝐷(𝜃)𝐷(𝜃)′]

where 𝜃 may be replaced by a consistent estimator. Example

• For pseudo ML estimators the covariance matrix needs to be adjusted (“sandwich esti-
mator”)
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11.2 The Bayesian approach

Bayes’ theorem: Reorganizing 𝑝(𝑦, 𝜃) = 𝑝(𝜃)𝑝(𝑦|𝜃) = 𝑝(𝑦)𝑝(𝜃|𝑦) we obtain:

𝑝(𝜃|𝑦)⏟
posterior dis.

= 𝑝(𝜃)⏟
prior dist.

⋅ 𝐿(𝜃)
𝑝(𝑦)⏟

updating factor

∝ 𝑝(𝜃)𝐿(𝜃) (∝ : proportional to)

where 𝐿(𝜃) = 𝑝(𝑦|𝜃) denotes the likelihood function

Bayesians prefer employing a conjugate family of distribution where the prior and posterior
distribution are special cases of the same family of distributions

Example: 𝑦𝑖 ∼ 𝒩(𝜇, 𝜎2), where 𝜎2 is treated as known

prior distribution 𝜇 ∼ 𝒩(𝜇0, 𝜎2
0)

This results in the posterior distribution:

𝜇|𝑦1,… , 𝑦𝑛 ∼ 𝒩( ̄𝜇, �̄�2)
with

̄𝜇 = 1
𝜓0 + 𝜓1

(𝜓0𝜇0 + 𝜓1𝑌 ) �̄�2 = 1
𝜓0 + 𝜓1

𝜓0 = 1
𝜎2
0
and 𝜓1 = 𝑛

𝜎2 (precision)

11.2.1 Parameter Estimation

The MSE optimal estimate is obtained as

̂𝜃 = 𝐸(𝜃|𝑦)

relationship to maximum likelihood:

log 𝑝(𝜃|𝑦) = const+ log 𝑝(𝜃)⏟
𝑂(1)

+ log𝐿(𝜃)⏟
𝑂(𝑁)

⇒ as 𝑁 → ∞ the mode of the posterior converge to ML
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in most cases the posterior distribution is too difficult to be obtained analytically ⇒ Monte
Carlo methods (Gibb sampler, MCMC simulator etc.)

Uniformative priors: Laplace’s principle of insufficient reason ⇒ uniform distribution (flat
prior)

Uniform distribution does not need to be uninformative (parameter transformation, e.g. 𝜓 =
𝑒𝜃)
Jeffreys’ prior is proportional to 1/𝜎𝜃 (or square root of the Fisher information). Uniform
prior is uninformative whenever 𝜎𝜃 does not depend on unknown parameters.

11.2.2 Comparison with the frequentist approach

Bayesian approach takes care of knowledge accumulation

Bayesian machinery (MCMC) used to estimate extremely complicated models (frequentist
approach fails)

Frequentist methods provide criteria for accessing the validity of the model. No such criteria
for a Bayesian framework
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11.3 Machine Learning Approach

Characteristics of the MLearn approach:

• Big data. The data sets typically cover a large number of observations (nomi-
nal/qualitative, ordinal, metric). Large dimensional: many variables potentially useful
for prediction

• Algorithmic approach: The data is typically unstructured with no specific “data gener-
ating model”. Algorithms are constructed to learn the structure from the data

• Limited theory. The algorithms are flexible and “trained” (instead of estimated) by the
data. Avoiding overfitting by splitting data into training and test sets

• MLern approaches are designed to cope with nonlinear data features

• Consider the conditional mean function:

𝑦𝑖 = 𝑚(𝑥𝑖)+𝑢𝑖

where 𝑥𝑖 is high dimensional (𝐾 may be even larger than 𝑁) and the functional form of 𝑚(⋅)
is unknown. The goal is to minimize

𝑀𝑆𝐸 = 𝐸 [𝑦𝑖 −𝑚(𝑥𝑖)]
2

• Supervised learning. Develop prediction rules for 𝑦𝑖 given the vector 𝑥𝑖

• Unsupervised learning. Uncovering structure amongst high-dimensional 𝑥𝑖

• Classification. Assigning observations to groups (classes).
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• Sparsity. Finding out which variables can be ignored.

Computational Feasibility

Algorithmic learning requires powerful computational tools

Extensive packages in R and Python

An input produces some output. In between a black box. The (relative) performance is often
not clear

“causal machine learning” tries to circumvent the correlation-is-not-causality critique

11.3.1 Regression as conditional expectation

Assume that the conditional expectation is a linear function such that

𝐸(𝑌𝑖|𝑋𝑖) = 𝛼 + 𝛽𝑋𝑖

Taking expectations with respect to 𝑋𝑖 yields

𝛼 = 𝐸(𝑌𝑖) − 𝛽𝐸(𝑋𝑖)
Furthermore we have

𝐸(𝑋𝑖𝑌𝑖) = 𝐸
𝑥
[𝑋𝑖𝐸(𝑌𝑖|𝑋𝑖)] = 𝛼𝐸(𝑋𝑖) + 𝛽𝐸(𝑋2

𝑖 )
𝐸(𝑋𝑖)𝐸(𝑌𝑖) = 𝐸(𝑋𝑖)𝐸𝑥 [𝐸(𝑌𝑖|𝑋𝑖)] = 𝛼𝐸(𝑋𝑖) + 𝛽[𝐸(𝑋𝑖)]2

Inserting the expression for 𝛼 yields

𝛽 = 𝐸(𝑋𝑖𝑌𝑖) − 𝐸(𝑋𝑖)𝐸(𝑌𝑖)
𝐸(𝑋2

𝑖 ) − [𝐸(𝑋𝑖)]2
= cov(𝑌𝑖, 𝑋𝑖)

var(𝑋𝑖)
Back
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11.3.2 ML estimation for the waiting time

Assume that the waiting time 𝜏𝑖 is exponentially distributed with

𝜏𝑖 ∼ 𝜆𝑒−𝜆𝜏 𝐸(𝜏𝑖) =
1
𝜆 var(𝜏𝑖) =

1
𝜆2

The log-likelihood function results as

ℓ(𝜆) = 𝑁 log(𝜆) − 𝜆
𝑁
∑
𝑖=1

𝜏𝑖

with derivative

𝜕ℓ(𝜆)
𝜕𝜆 = 𝑁

𝜆 −
𝑁
∑
𝑖=1

𝜏𝑖

The ML estimator results as �̂� = 1/ ̂𝜏 . The information (matrix) results as

𝐼(𝜆) = −𝐸 (−𝑁
𝜆2) = 𝑁

𝜆2

yielding 𝑣𝑎𝑟(�̂�) = 𝜆2/𝑁
The joint density results as

log𝐿(𝑋, 𝜇) + log 𝑝(𝜇) = const− 1
2𝜎2

𝑁
∑
𝑖=1

(𝑌𝑖 − 𝜇)2 − 1
2𝜎2

0
(𝜇 − 𝜇0)2⏟⏟⏟⏟⏟

prior distribution

= const− 𝜓1 + 𝜓0
2⏟

1/(2�̄�2)

𝜇2 + 2𝜇 (𝜓1 ̄𝑌 + 𝜓0𝜇0
2 )

⏟⏟⏟⏟⏟⏟⏟
�̄�/(2�̄�2)

+…

such that

�̄�2 = 1
𝜓1 + 𝜓0

= 1
(𝑛/𝜎2) + (1/𝜎2

0)
̄𝜇 = 1

𝜓1 + 𝜓0
(𝜓1 ̄𝑌 + 𝜓0𝜇0)

Back
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12 Regression Analysis

12.1 Data Collection

Many datasets provided via the WWW:

• Excel/CSV files provided by some organisation (Bundesbank, EZB, Statistisches Bunde-
samt, Eurostat …)

• Application programming interface (API): Fred Database
• Data scraping (extract data from a HTML code using R or Python)

CSV (Comma-separated values) is the most common format

Checking data for missing values and errors

Tidy data format (variables in columns, obs. in rows)

Compute descriptive statistics (mean, std.dev, min/max, distribution)

Report sufficient info on the data source (for replication)

12.2 Data Preparation

Assess the quality of the data source

Transform text into numerical values (dummy variables)

Plausibility checks / descriptive statistics

data set may contain missing values (‘NA’, dots, blank)

few NA: just ignore them (the row will be dropped)

when many observations lost: imputation (replace NA by estimated values)

a) Multiple Imputation: Assume that 𝑥𝑘,𝑡 is missing. For available observations run the
regression

𝑥𝑘,𝑡 = 𝛾0 +
𝑘−1
∑
𝑗=1

𝛾𝑗𝑥𝑗,𝑡 + 𝜖𝑖
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⇒ replace the missing values by ̂𝑥𝑘,𝑡.

For missing values in more regressors: iterative approach

MaxLike approach available for efficient imputation

12.3 OLS estimator

OLS: Ordinary least-square estimator

𝑏 = argmin
𝛽

{(𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)}

yields the least-squares estimator:

𝑏 = (𝑋′𝑋)−1𝑋′𝑦

Unbiased estimator for 𝜎2: (note that 𝑋′𝑒 = 0)

𝑠2 = 1
𝑁 −𝐾(𝑦 −𝑋𝑏)′(𝑦 − 𝑋𝑏)

Maximum-Likelihood (ML) estimator

Log-likelihood function assuming normal distribution:

ℓ(𝛽, 𝜎2) = ln𝐿(𝛽, 𝜎2) = ln[
𝑁
∏
𝑖=1

𝑓(𝑢𝑖)]

= −𝑁
2 ln 2𝜋 − 𝑁

2 ln𝜎2 − 1
2𝜎2 (𝑦 − 𝑋𝛽)′(𝑦 − 𝑋𝛽)

ML and OLS of 𝛽 are identical under normality

ML estimator for 𝜎2:

�̃�2 = 1
𝑁 (𝑦 − 𝑋𝑏)′(𝑦 − 𝑋𝑏)
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Goodness of fit:

𝑅2= 𝐸𝑆𝑆
𝑇𝑆𝑆 = 1 − 𝑆𝑆𝑅

𝑇𝑆𝑆 = 1 − 𝑒′𝑒
𝑦′𝑦 − 𝑁 ̄𝑦2 = 𝑟2𝑥𝑦

adjusted 𝑅2:

�̄�2 = 1 − 𝑒′𝑒/(𝑁 −𝐾)
(𝑦′𝑦 − 𝑁 ̄𝑦2)/(𝑁 − 1)

12.4 Properties of the OLS estimator

a) Expectation [note that 𝑏 = 𝛽+ (𝑋′𝑋)−1𝑋′𝑢⏟⏟⏟⏟⏟
estimation error

]

𝐸(𝑏) = 𝛽
𝐸(𝑠2) = 𝜎2

𝐸(�̃�2) = 𝜎2(𝑁 −𝐾)/𝑁

b) Distribution assuming 𝑢 ∼ 𝒩(0, 𝜎2𝐼𝑁)

𝑏 ∼ 𝒩(𝛽,Σ𝑏), Σ𝑏 = 𝜎2(𝑋′𝑋)−1

(𝑁 −𝐾)
𝜎2 𝑠2 ∼ 𝜒2

𝑁−𝐾

c) Efficiency

𝑏 is BLUE

under normality: 𝑏 and 𝑠2 are MVUE
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12.5 Testing Hypotheses

Significance level or size of a test (Type I error)

𝑃(|𝑡𝑘| ≥ 𝑐𝛼/2|𝛽 = 𝛽0) = 𝛼∗

where 𝛼 is the nominal: size and 𝛼∗ is the actual size

a test is unbiased (controls the size) if 𝛼∗ = 𝛼

a test is asymptotically valid if 𝛼∗ → 𝛼 for 𝑁 → ∞

1 - type II error or power of the test:

𝑃(|𝑡𝑘| ≥ 𝑐𝛼/2|𝛽 = 𝛽1) = 𝜋(𝛽1)

a test is consistent if

𝜋(𝛽1) → 1 for all 𝛽1 ≠ 𝛽0

The conventional significance level is 𝛼 = 0.05 for a moderate sample size (𝑁 ∈ [50, 500], say)

a test is uniform most powerful (UMP) if

𝜋(𝛽) ≥ 𝜋∗(𝛽) for all 𝛽 ≠ 𝛽0

where 𝜋∗(𝛽) denotes the power function of any other unbiased test statistic.

⇒ The one-sided t-test is UMP but in many cases there does not exist a UMP test.

The 𝑝-value (or marginal significance level) is defined as
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p-value = 𝑃(𝑡𝑘 ≥ ̄𝑡𝑘|𝛽 = 𝛽0) = 1 − 𝐹0(𝑡𝑘)

that is, the probability to observe a larger value of the observed statistic ̄𝑡𝑘 .

Under the null hypothesis the 𝑝-value is uniformly distributed on [0, 1]. Since it is a random
variable, it is NOT a probability (that the null hypothesis is correct).

Testing general linear hypotheses on 𝛽
𝐽 linear hypotheses on 𝛽 represented by

𝐻0 ∶ 𝑅𝛽 = 𝑞, 𝐽 × 1
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Wald statistic
𝑅𝑏 − 𝑞 ∼ 𝒩(0, 𝜎2𝑅(𝑋′𝑋)−1𝑅′)

if 𝜎2 is known:

1
𝜎2 (𝑅𝑏 − 𝑞)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝑏 − 𝑞) ∼ 𝜒2

𝐽

if 𝜎2 is replaces by 𝑠2:

𝐹 = 1
𝐽𝑠2 (𝑅𝑏 − 𝑞)′[𝑅(𝑋′𝑋)−1𝑅′]−1(𝑅𝑏 − 𝑞) = 𝑁 −𝐾

𝐽
(𝑒′𝑟𝑒𝑟 − 𝑒′𝑒)

𝑒′𝑒
∼ 𝜒2

𝐽/𝐽
𝜒2
𝑁−𝐾/(𝑁 −𝐾) ≡ 𝐹 𝐽

𝑁−𝐾

Alternatives to the F statistic

Generalized LR test: 𝐺𝐿𝑅 = 2(ℓ( ̂𝜃) − ℓ( ̂𝜃𝑟)) = 𝑁(log 𝑒′𝑟𝑒𝑟 − log 𝑒′𝑒) ∼ 𝜒2
𝐽

⇒ first order Taylor expansion yields the Wald/F statistic

LM (score) test: Define the “’score vector” as:

𝑠( ̂𝜃𝑟) =
𝜕 log𝐿(𝜃)

𝜕𝜃 ∣
𝜃= ̂𝜃𝑟

= 1
�̂�2𝑟

𝑋′𝑒𝑟

The LM test statistic is given by

LM = 𝑠( ̂𝜃𝑟)′𝐼( ̂𝜃𝑟)−1𝑠( ̂𝜃𝑟) ∼ 𝜒2
𝐽

where 𝐼( ̂𝜃𝑟) is some estimate of the information matrix
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In the regression the LM statistic can be obtained from testing 𝛾 = 0 the auxiliary regression

1 = 𝛾′𝑠𝑖( ̂𝜃𝑟) + 𝜈𝑖
⇒ uncentered 𝑅2: 𝑅2

𝑢 = ̄𝑠′(∑𝑠𝑖𝑠′𝑖)−1 ̄𝑠. 𝑁 ⋅ 𝑅2
𝑢 ∼ 𝜒2

𝐽
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12.5.1 Specification tests

a) Test for Heteroskedasticity (Breusch-Pagan / Koenker)

variance function: 𝜎2
𝑖 = 𝛼0 + 𝑧′𝑖𝛼

since 𝐸(�̂�2
𝑖 ) ≈ 𝜎2 estimate the regression

�̂�2
𝑖 = 𝛼0 + 𝑧′𝑖𝛼 + 𝜈𝑖

⇒ 𝐹 or 𝐿𝑀 test statistic for 𝐻0: 𝛼 = 0
in practice 𝑧𝑖 = 𝑥𝑖 but also cross-products and squares of the regressors (White test)

robust (White) standard errors: replace invalid formula 𝑉 𝑎𝑟(𝑏) = 𝜎2(𝑋′𝑋)−1 by the estima-
tor:

𝑉 𝑎𝑟(𝑏) = (𝑋′𝑋)−1 (
𝑛

∑
𝑖=1

�̂�2
𝑖𝑥𝑖𝑥′

𝑖)(𝑋′𝑋)−1

b) Tests for Autocorrelation

(i) Durbin-Watson-Test:

𝑑𝑤 = ∑𝑁
𝑡=2(�̂�𝑡 − �̂�𝑡−1)2

∑𝑁
𝑡=1 �̂�2

𝑡
≈ 2(1 − ̂𝜌)

Problem: Distribution depends on 𝑋 ⇒ uncertainty range

(ii) Breusch-Godfrey Test: 𝑢𝑡 = 𝜌1𝑢𝑡−1 +⋯+ 𝜌𝑚𝑢𝑡−𝑚+𝑣𝑡
replace 𝑢𝑡 by �̂�𝑡 and include 𝑥𝑡 to control for the estimation error in 𝑢𝑡 and testing 𝐻0:
𝜌1 = ⋯ = 𝜌𝑚 = 0
(iii) Box-Pierce Test:

𝑄𝑚 = 𝑇
𝑚
∑
𝑗=1

̂𝜌𝑗2
𝑎∼ 𝜒2

𝑚

test of autocorrelation up to lag order 𝑚

HAC standard errors:

Heteroskedasticity and Autocorrelation Consistent standard errors (Newey/West 1987)

standard errors that account for autocorrelation up to lag ℎ (truncation lag)
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“Rule of thumb” for choosing 𝐻 (e.g. Eviews/Gretl)

ℎ = 𝑖𝑛𝑡[4(𝑇/100)2/9]

Relationship between autocorrelation and dynamic models:

Inserting 𝑢𝑡 = 𝜌𝑢𝑡−1 + 𝑣𝑡 yields

𝑦𝑖 = 𝜌𝑦𝑡−1 + 𝛽′𝑥𝑖 − 𝜌𝛽′⏟
𝛾

𝑥𝑡−1 + 𝑣𝑖

⇒ Common factor restriction: 𝛾 = −𝛽𝜌

Test for normality

The asymptotic properties of the OLS estimator do not depend on the validity of the normality
assumption

Deviations from the normal distribution only relevant in very small samples

Outliers may be modeled by mixing distributions

Tests for normality are very sensitive against outliers

Under the null hypothesis 𝐸(𝑢3
𝑖 ) = 0 and 𝐸(𝑢4

𝑖 ) = 3𝜎4

Jarque-Bera test statistic:

𝐽𝐵 = 𝑛[16�̂�
2
3+

1
24(�̂�4 − 3)2] 𝑑→ 𝜒2

2

where

�̂�3 = 1
𝑇 �̂�3

𝑇
∑
𝑡=1

�̂�3
𝑖 �̂�4 = 1

𝑇 �̂�4

𝑇
∑
𝑡=1

�̂�4
𝑖

Other tests: 𝜒2 and Kolmogorov-Smirnov Test
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12.6 Nonlinear regression models

a) Polynomial regression

including squares, cubic etc. transformations of the regressors:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋2
𝑖 +⋯+ 𝛽𝑝𝑋𝑝

𝑖 + 𝑢𝑖

where 𝑝 is the degree of the polynomial (typically 𝑝 = 2)
Interpretation (for 𝑝 = 2)

𝜕𝑌
𝜕𝑋 = 𝛽1 + 2𝛽2𝑋

⇒ Δ𝑌 ≈ (𝛽1 + 2𝛽2𝑋)Δ𝑋
exact: Δ𝑌 = 𝛽1Δ𝑋 + 𝛽2(𝑋 +Δ𝑋)2 − 𝛽2𝑋2

= (𝛽1 + 2𝛽2𝑋)Δ𝑋+𝛽2(Δ𝑋)2

⇒ the effect on 𝑌 depends on the level of 𝑋
for small changes in 𝑋 the derivative provides a good approximation

Computing standard errors for the nonlinear effect:

Method 1:

s.e. (Δ ̂𝑌 ) = √var(𝑏1) + 4𝑋2var(𝑏2) + 8𝑋cov(𝑏1, 𝑏2)
= |Δ ̂𝑌 |/

√
𝐹

where 𝐹 is the 𝐹 statistic for the test 𝐸(Δ ̂𝑌𝑖) = 𝛽1 + 2𝑋𝛽2 = 0

Method 2:

𝑌𝑖 = 𝛽0 + (𝛽1 + 2𝑋𝛽2)⏟⏟⏟⏟⏟
𝛽∗
1

𝑋𝑖 + 𝛽2 (1 − 2𝑋𝑋 𝑖
)𝑋2

𝑖⏟⏟⏟⏟⏟⏟⏟
𝑋∗

𝑖

+𝑢𝑖

200



Regression 𝑌𝑖 = 𝛽0 + 𝛽∗
1𝑋𝑖 + 𝛽∗

2𝑋∗
𝑖 + 𝑢𝑖 and t-test of 𝛽∗

1 = 0
Confidence interval for the effect are obtained as Δ ̂𝑌 ± 𝑧𝛼/2 ⋅ 𝑠.𝑒.(Δ ̂𝑌 ) or 𝑏∗1 ± s.e.(𝑏∗1)

Logarithmic transformation

Three possible specifications:

log-linear: log(𝑌𝑖) = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖
linear-log: 𝑌𝑖 = 𝛽0 + 𝛽1log(𝑋𝑖) + 𝑢𝑖

log-log: log(𝑌𝑖) = 𝛽0 + 𝛽1log(𝑋𝑖) + 𝑢𝑖

Note that in the log-linear model

𝛽1 = 𝑑 log(𝑌 )
𝑑𝑋 = 1

𝑌⏟
𝑜𝑢𝑡𝑒𝑟

⋅ 𝑑𝑌
𝑑𝑋⏟
𝑖𝑛𝑛𝑒𝑟

= 𝑑𝑌 /𝑌
𝑑𝑋

where 𝑑𝑌 /𝑌 indicates the relative change

In a similar manner it can be shown that for the log-log model 𝛽1 = (𝑑𝑌 /𝑌 )/(𝑑𝑋/𝑋) is the
elasticity

Note that the derivative refers to a small change. Exact:

𝑌1 − 𝑌0
𝑌0

= 𝑒𝛽1Δ𝑋 − 1

where 𝑙𝑜𝑔(𝑌0) = 𝛽0 + 𝛽1𝑋 and 𝑙𝑜𝑔(𝑌1) = 𝛽0 + 𝛽1(𝑋 +Δ𝑋).
For small Δ𝑋 we have (𝑌1 − 𝑌0)/𝑌0 ≈ 𝛽1Δ𝑋

Interaction effects

Interaction terms are products of regressors:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽2𝑋2𝑖 + 𝛽3(𝑋1𝑖 ×𝑋2𝑖) + 𝑢𝑖

where 𝑋1𝑖, 𝑋2𝑖 may be discrete or continuous

Note that we can also write the model with interaction term as
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𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + (𝛽2 + 𝛽3𝑋1𝑖)⏟⏟⏟⏟⏟
effect depends on 𝑋1𝑖

𝑋2𝑖 + 𝑢𝑖

If 𝑋2𝑖 is discrete (dummy), then the coefficient is different for 𝑋2𝑖 = 1 and 𝑋2𝑖 = 0
Standard errors also depend on 𝑋2𝑖:

𝑌𝑖 = 𝛽0 + 𝛽1𝑋1𝑖 + 𝛽∗
2𝑋2𝑖 + 𝛽3(𝑋1𝑖 −𝑋1𝑖)𝑋2𝑖+𝑢𝑖

where 𝛽∗
2 = 𝛽2 + 𝛽3𝑋1𝑖 and 𝑋1𝑖 is a fixed value of 𝑋1𝑖.

Nonlinear least-squares (NLS)

Assume a nonlinear relationship between 𝑌𝑖 and 𝑋𝑖 where the parameters enter nonlinearly

𝑌𝑖 = 𝑓(𝑋𝑖, 𝛽) + 𝑢𝑖

Example:

𝑓(𝑋𝑖, 𝛽) = 𝛽1 + 𝛽2𝑋𝛽3 𝑖 + 𝑢𝑖

Assuming i.i.d. normally distributed errors, the maximum likelihood principle results in mini-
mizing the sum of squared residuals:

𝑆𝑆𝑅(𝛽) =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝑓(𝑋𝑖, 𝛽))
2

The SSR can be minimized by using iterative algorithms (Gauss-Newton method)

The Gauss-Newton method requires the first derivative of the function 𝑓(𝑋𝑖, 𝛽) with respect
to 𝛽.
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13 Machine Learning Methods

OLS regression requires sufficient degrees of freedom (N-K)

Asymptotic theory assumes 𝑁 −𝐾 → ∞
Standard asymptotic results are invalid if 𝐾/𝑁 → 𝜅 > 0
OLS estimation typically no/small bias but large variance

Performance is measured by the “risk”, typically mean-squared error:

𝐸(𝑏 − 𝛽)2 = 𝐸 {[𝑏 − 𝐸(𝑏)]2}⏟⏟⏟⏟⏟⏟⏟
variance

+[𝐸(𝑏) − 𝛽]2⏟⏟⏟⏟⏟
bias2

The variance represents the unsystematic error and the bias the systematic error. If the
parameters are estimated only oncy, the distinction becomes irrelevant.

Ridge estimation

Introducing an 𝐿2 penalty:

𝑆𝑅
𝜆 = (𝑦 −𝑋𝛽)′(𝑦 − 𝑋𝛽) + 𝜆‖𝛽‖2

where ‖𝛽‖ = √∑𝐾
𝑗=1 𝛽2

𝑗 denotes the Gaussian norm

minimizing 𝑆𝑅
𝜆 yields the Ridge estimator

̂𝛽𝑅 = (𝑋′𝑋 + 𝜆𝐼𝐾)−1 𝑋′𝑦

If 𝐾 > 𝑁 then 𝑋′𝑋 is singular but 𝑋′𝑋 + 𝜆𝐼𝐾 is not!
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Since 𝑋′𝑋 + 𝜆𝐼𝐾 is “larger” than 𝑋′𝑋 (in a matrix sense) the coefficients in ̂𝛽𝑅 “shrink
towards zero” as 𝜆 gets large

Choice of 𝜆 is typically data driven (see below)

13.1 Lasso Regression

“Sparse regression”: Many of the coefficients are actually zero

Define the 𝐿𝑟 norm as
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‖𝛽‖𝑟 = (
𝐾
∑
𝑗=1

|𝛽𝑗|𝑟)
1/𝑟

such that

𝑆𝐿
𝜆 = (𝑦 −𝑋𝛽)′(𝑦 − 𝑋𝛽) + 𝜆‖𝛽‖1

𝐿1 penalty corresponds to the constraint:

𝐾
∑
𝑗=1

|𝛽𝑗| ≤ 𝜏

Solution of the minimization problem by means of quadratic programming

The solution typically involves zero coefficients

Some more details

The regressors and dependent variables are typically standardized:

̃𝑥𝑗,𝑖 = (𝑥𝑗,𝑖 − ̄𝑥𝑗)/𝑠𝑗
where ̄𝑥𝑗 and 𝑠𝑗 are the mean and standard deviation of 𝑥𝑗

Relationship to pre-test estimator: For a simple regression The first order condition is given
by:

2
𝑁 (

𝑁
∑
𝑖=1

̃𝑥𝑖 ̃𝑦𝑖 −
𝜆
𝑁

𝑁
∑
𝑖=1

̃𝑥2
𝑖𝛽)± 𝜆 != 0

𝛽 − ̂𝛽𝐿
𝜆 ± 𝑁

2 𝜆 != 0

and therefore:

̂𝛽𝐿
𝜆 =

⎧{
⎨{⎩

𝑏 + 𝜆∗ if 𝑏 < −𝜆∗

0 if − 𝜆∗ ≤ 𝑏 ≤ 𝜆∗

𝑏 − 𝜆∗ if 𝑏 > 𝜆∗
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where 𝜆∗ = 𝜆 ⋅ 𝑁/2

Selecting the shrinkage parameter

Trade-off between bias (large 𝜆) and variance (small 𝜆).
Choose 𝜆 that minimizes the 𝑀𝑆𝐸 = 𝐵𝑖𝑎𝑠2 + 𝑉 𝑎𝑟
leave-one-out cross validation:

Drop one observation and forecast it based on the remaining N-1 observations

k-fold cross validation:

divide randomly the set of observations into k groups (folds) of approximately equal size. The
first fold is treated as a validation set and the remaining k-1 folds are employed for parameter
estimation

evaluate the loss (MSE) for each observation conditional on 𝜆 and compute the average loss
as a function of 𝜆
Minimize the loss (MSE) with respect to 𝜆
k is typically between 5 - 10

Refinements

post-Lasso estimation: Re-estimate the parameters by OLS leaving out the coefficients that
were set to zero by LASSO

oracle property: the asymptotic distribution of the estimator is the same as if we knew which
coefficient is equal to zero

Original LASSO does not exhibit the oracle property

Adaptive LASSO: with weighted penalty ∑𝐾
𝑗=1 𝑤𝑗|𝛽𝑗| and

𝑤𝑗 = 1/|𝑏𝑗|𝜈 with some 𝑣 > 0

where 𝑏𝑗 denotes the OLS estimate

if K > N replace 𝑏𝑗 by the simple regression coefficient

Adaptive LASSO possesses the oracle property
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Elastic net: hybrid method LASSO/Ridge

𝑆𝐿
𝜆 = (𝑦 −𝑋𝛽)′ (𝑦 − 𝑋𝛽) + 𝜆1 ‖𝛽‖1 + 𝜆2 ‖𝛽‖22

13.2 Dimension reduction techniques

if k is large, it is desirable to reduce the dimensionality by using linear combinations

𝑍𝑚 =
𝑘

∑
𝑗=1

𝜙𝑗𝑚𝑋𝑗 𝑚 = 1,… , 𝑘

where 𝜙1𝑚,… , 𝜙𝑘𝑚 as unknown constants such that M « k

Using these linear combinations (“common factors”, principal components) the regression be-
comes
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𝑦𝑖 = 𝜃0 +
𝑀
∑
𝑚=1

𝜃𝑚𝑧𝑖𝑚 + 𝜖𝑖

Inserting shows that the elements of 𝛽 fulfills the restriction

𝛽𝑗 =
𝑀
∑
𝑚=1

𝜃𝑚𝜙𝑗𝑚

choose 𝜙1𝑚,… , 𝜙𝑘𝑚 such that the “loss of information” is minimal

Principal component regression

choose the linear combinations 𝑍𝑚 such that they explain most of 𝑋𝑗:

𝑋𝑗 =
𝑀
∑
𝑚=1

𝛼𝑗𝑚𝑍𝑚 + 𝑣𝑗

such that the variance of 𝑣𝑗 is minimized:

𝑆2(𝛼, 𝜙) =
𝑘

∑
𝑗=1

𝑛
∑
𝑖=1

𝑣2𝑗𝑖

The linear combination is obtained from the eigenvectors of the sample covariance matrix of
𝑋
The number of linear combinations, 𝑀 , can be determined by considering the ordered eigen-
values

Another approach is the method of Partial Least-Squares, where the linear combinations are
found sequentially by considering the covariance with the dependent variable

Computational Details

let 𝑋 denote an 𝑁 ×𝐾 matrix of regressors, then

𝑋 = 𝑍𝐴′ + 𝑉
where 𝑍 is 𝑁 ×𝑀 where 𝑀 < 𝐾. Inserting in the model for 𝑦 yields
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𝑦 = 𝑍 𝐴′𝛽⏟ +𝑢+ 𝑉 𝛽⏟
= 𝑍′𝜃 + 𝜖

the estimates can be obtained from the “singular value decomposition”:

𝑋 = 𝑈𝐷𝑉 ′

where 𝑈 ′𝑈 = 𝐼𝑁 and 𝑉 ′𝑉 = 𝐼𝑘

and 𝐷 an 𝑁 ×𝐾 diagonal matrix of the 𝐾 singular values

the dimension reduction is obtained by dropping the last 𝑁 − 𝑀 and 𝐾 − 𝑀 columns of 𝑈
and 𝑉 respectively.

the matrix 𝑍 (loading matrix) is obtained as 𝑈𝑀 and 𝐹 = 𝐷𝑀𝑉 ′
𝑀 is the matrix of factors

13.3 Regression trees / Random forest

piecewise constant function:

𝑓(𝑥) =
𝐽
∑
𝑗=1

1(𝑥 ∈ 𝑅𝑗)𝑐𝑗

where 𝑅𝑗 = [𝑠𝑗−1, 𝑠𝑗) is some region in the real space

finding the best split point 𝑠 for some splitting variable 𝑥𝑗,𝑖 is simple if there are only two
regions (𝐽 = 2) such that

min
𝑠

[∑
𝑖∈𝑅1

(𝑦𝑖 − ̂𝑐1)2 + ∑
𝑖∈𝑅2

(𝑦𝑖 − ̂𝑐2)2]

we can proceed by searching for the next optimal split in the regions 𝑅1 and 𝑅2 and so on

how far do we need to extend this tree? Typically we stop if the region becomes dense (node
size < 5, say)
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Pruning the tree: Keep only the branches that result in a sufficient (involving some parameter
𝛼) reduction of the objective function. 𝛼 is chosen by cross validation.

Bagging: Full sample 𝑍 = {(𝑥′
1, 𝑦1), (𝑥′

2, 𝑦2),… , (𝑥′
𝑁 , 𝑦𝑁)}

The bootstrap sample: is obtained by drawing randomly from the set {1, 2,⋯ ,𝑁} such that

𝑍∗
𝑏 = {(𝑥∗′

1 , 𝑦∗1), (𝑥∗′
2 , 𝑦∗2),… , (𝑥∗′

𝑁 , 𝑦∗𝑁)}

Let ̂𝑓∗
𝑏 (𝑥) denote the prediction based on the regression fit based on 𝑍∗

𝑏 . The aggregated
prediction is obtained as

̂𝑓bag(𝑥) =
1
𝐵

𝐵
∑
𝑏=1

̂𝑓∗
𝑏 (𝑥)

Bootstrap aggregation stabilizes the unstable outcome of a regression tree

Specifically, when growing a tree on a bootstrapped dataset: Before each split, select 𝑚 < 𝑝,
e.g. 𝑚 = 𝑖𝑛𝑡(√𝑝) of the input variables at random as candidates for splitting.

This reduces the correlation among the bootstrap draws
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14 Limited Dependent Variables

Binary choice models

Choice based on Utility

𝑈𝑖0 = 𝑥′
𝑖𝛾0 + 𝜖𝑖0

𝑈𝑖1 = 𝑥′
𝑖𝛾1 + 𝜖𝑖1

where

𝑈𝑖𝑗 ∶ utility due to the choice of j
𝑥𝑖 ∶ variables characterizing the individual i

Decision rule:

𝑦∗𝑖 = 𝑈𝑖1 − 𝑈𝑖0 = {> 0 ⇒ choose 1
≤ 0 ⇒ choose 0

𝑦∗𝑖 = 𝑥′
𝑖(𝛾1 − 𝛾0)+𝜖𝑖1 − 𝜖𝑖0

= 𝑥′
𝑖𝛽+𝜖𝑖

where 𝜀𝑖 = 𝜖𝑖1 − 𝜖𝑖0
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14.1 Linear probability model

𝑦∗𝑖 in the binary choice model is typically not observed. What we observe is:

𝑦𝑖 = {1 for 𝑦∗𝑖 > 0,
0 for 𝑦∗𝑖 ≤ 0.

Assuming that the probability function is linear we have

𝐸(𝑦𝑖|𝑥𝑖) = 𝑃(𝑦𝑖 = 1|𝑥𝑖)⋅1+𝑃(𝑦𝑖 = 0|𝑥𝑖)⋅0
= 𝑥′

𝑖𝛽

In this case we can estimate the linear regression:

𝑦𝑖 = 𝑥′
𝑖𝛽 + 𝑢𝑖

A linear probability function is pretty unrealistic and implies that 𝜀𝑖 is uniformly distributed
(see below)

The errors 𝑢𝑖 are heteroskedastic (variance depends on 𝑥𝑖). Robust standard errors are re-
quired.

14.2 Probit/Logit models

Consider the binary choice model with

𝑃(𝑦𝑖 = 1) = 𝑃(𝜀𝑖 > −𝑥′
𝑖𝛽)

= 1 − 𝐹(−𝑥′
𝑖𝛽)

where 𝐹(⋅) denotes the distribution function of 𝜀𝑖
It follows that

𝐸(𝑦𝑖|𝑥𝑖) = 1 − 𝐹(−𝑥′
𝑖𝛽)

= 𝐹(𝑥′
𝑖𝛽) if the distribution is symmetric
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Nonlinear regression model:

𝑦𝑖 = 𝐸(𝑦𝑖|𝑥𝑖)+𝑢𝑖
= 𝐹(𝑥′

𝑖𝛽)+𝑢𝑖 for symmetric distributions

error is (centered) binomially distributed with 𝑝𝑖 = 𝐹(𝑥′
𝑖𝛽)

estimation with Maximum Likelihood (similar to nonlinear regression)

Popular distributions:

𝐹 ∼ normal distribution
∼ logistic distribution

Choice of the Distribution:

• Usually no information about the distribution
• Referring to the central limit theorem
• Practical reasons
• Specification tests
• Nonparametric estimation

Normal distribution (“Probit”)

𝐹 ≡ Φ(𝑧) = ∫
𝑧

−∞

1√
2𝜋𝑒

−𝑢2/2 𝑑𝑢

Logistic distribution (“Logit”)

𝐹 ≡ 𝐿(𝑧) = 1
1 + 𝑒−𝑧

Both distributions are symmetric:

1 − 𝐹(−𝑧) = 𝐹(𝑧)
and therefore: 𝑦𝑖 = 𝐹(𝑥′

𝑖𝛽)+𝑣𝑖
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Both distributions are very similar

Φ(𝑧) ≈ 𝐿( 𝜋√
3𝑧)

Marginal probability effect

partial effect of 𝑥𝑖 on 𝑦𝑖

𝑀𝑃𝐸𝑖 =
𝜕𝐹(𝑥′

𝑖𝛽)
𝜕𝑥𝑖

= 𝜙(𝑥′
𝑖𝛽)𝛽

⇒ effect depends on the level of 𝑥𝑖

Maximum likelihood (ML) estimator

log-likelihood function for a symmetric distribution:

log𝐿(𝛽) =
𝑁
∑
𝑖=1

𝑦𝑖log𝐹(𝑥′
𝑖𝛽)+(1 − 𝑦𝑖)log[1 − 𝐹(𝑥′

𝑖𝛽)]
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Differentiation with respect to 𝛽 yields the first order condition:

𝑠( ̂𝛽) =
𝑁
∑
𝑖=1

𝑒𝑖𝑓(𝑥′
𝑖 ̂𝛽)

𝐹 (𝑥′
𝑖 ̂𝛽)(1 − 𝐹(𝑥′

𝑖 ̂𝛽))
𝑥𝑖 = 0

where 𝑒𝑖 = 𝑦𝑖 − 𝐹(𝑥′
𝑖 ̂𝛽)

Nonlinear system of 𝐾 equations: Iterative algorithm

Estimator is equivalent to nonlinear LS with heteroskedasticn errors

Goodness of fit

(i) McFadden 𝑅2:

MF-𝑅2 = 1 − log𝐿( ̂𝛽)
log𝐿(𝛽 = 0)

(ii) forecasting 𝑦𝑖: Let

̂𝑦𝑖 = {1 if 𝐹(𝑥′
𝑖 ̂𝛽) > 0.5 or 𝑥′

𝑖 ̂𝛽 > 0,
0 otherwise

frequency of wrong forecasts:

𝑛01 + 𝑛10
𝑛 = ∑𝑛

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
𝑛

⇒ 𝑅2 based on the number of wrong forecasts
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14.3 Classification

Let 𝐹𝑖 denote the estimated probability for 𝑦𝑖 = 1. The optimal assignment to the unknown
alternatives {0, 1} is 𝑦𝑖 = 1 if 𝐹𝑖 > 0.5.
This classification rule works poorly if 𝐹𝑖 is small. Assume that 𝑥𝑖 ∼ U[0, 1] and

𝑦∗𝑖 = −2 + 2𝑥 + 𝑢𝑖

then the probability for 𝑦𝑖 = 1 is 0.2, but in the sample, no unit value is predicted!

One may calibrate the threshold to reduce the classification error such that

𝑛
∑
𝑖=1

1(𝐹𝑖 > 𝜏) =
𝑛

∑
𝑖=1

𝑦𝑖

⇒ match the unconditional probabilities.

Trade-off between the two types of misclassification

Useful tool: ROC curve (true positive vs. false positive) If 𝜏 is decreased → more ONEs. These
can be correct and false detections.

A classification blue is uniformly better than red if ROC is always above ROC

⇒ maximize the area below the ROC curve
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The target of the Probit/Logit estimator is 𝑃(𝑦𝑖 = 1) = 𝐹(𝑥′
𝑖𝛽). The optimal estimator of the

probability coincides with the efficient estimator of 𝛽.
The classification problem seeks an “optimal” estimator for 𝑦𝑖 based on the indicator function
𝑦𝑖 by minimizing some combination of the (error rates):

False Positive = ∑
𝑖

𝑦𝑖(1 − 𝑦𝑖)/∑
𝑖

𝑦𝑖 and

False Negative = ∑
𝑖
(1 − 𝑦𝑖)𝑦𝑖/∑

𝑖
(1 − 𝑦𝑖)

Note that 𝐹(𝑥′
𝑖𝛽) > 𝜏 is equivalent to 𝑥′

𝑖𝛽 > 𝜏∗ with 𝜏∗ = 𝐹−1(𝜏). ⇒ distribution not relevant
for classification

Support vector classifier: Maximize 𝑀 subject to:

(2𝑦𝑖 − 1)(𝑥′
𝑖𝛽) ≥ 𝑀(1 − 𝜉𝑖)

𝜉𝑖 > 0, ∑𝜉𝑖 ≤ 𝐶
𝛽′𝛽 = 1
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14.4 Sample selection model

Regression model: 𝑦𝑖 = 𝑥′
1𝑖𝛽1 + 𝑢1𝑖 if ℎ𝑖 = 1

Selection rule: ℎ∗
𝑖 = 𝑥′

2𝑖𝛽2 + 𝑢2𝑖 with 𝐸(𝑢2
2𝑖) = 1

ℎ𝑖 = {1 if ℎ∗
𝑖 > 0 observed

0 otherwise not observed

Equivalent to the Tobit model if:

𝑥1𝑖 = 𝑥2𝑖, 𝛽1/𝜎 = 𝛽2, 𝑢1𝑖/𝜎 = 𝑢2𝑖

truncated joint density

𝐸(𝑦𝑖|𝑦𝑖 observed) = 𝑥′
1𝑖𝛽+𝜚𝜎𝜆𝑖

where 𝜚 = 𝐸(𝑢1𝑖𝑢2𝑖)/𝜎 and

𝜆𝑖 =
𝜙(𝑥′

2𝑖𝛽2)
Φ(𝑥′

2𝑖𝛽2)

Heckman estimator

First step: Probit estimator

̃𝑦∗𝑖 = 𝑥′
𝑖 ̃𝛽 + 𝑢𝑖

where ̃𝛽 = 𝛽/𝜎 and

𝑦𝑖 = {1 if ̃𝑦∗𝑖 > 0
0 otherwise

Second step: augmented regression:
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𝜆𝑖 =
𝜙(𝑥′

𝑖 ̃𝛽)
Φ(𝑥′

𝑖 ̃𝛽)

and

𝑦𝑖|𝑦∗𝑖 > 0 = 𝑥′
𝑖𝛽 + 𝜎�̂�𝑖+𝜈𝑖

Standard errors are biased

ML estimator is available
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15 Causal Inference

15.1 Experiments and Treatment Effects

Causal effects as measured in (double blind) clinical trials

Separation into two groups a) with treatment b) without treatment (placebo)

Quasi-experiment: because of external events the treatment of some individual occurs as if it
is random

Let 𝑌 (𝑋) denote the (potential) outcome variable, depending on the binary treatment indica-
tor 𝑋𝑖:

𝑌𝑖|𝑋𝑖 = 1 ∶ outcome with treatment
𝑌𝑖|𝑋𝑖 = 0 ∶ outcome without treatment

Average causal effect: 𝐸(𝑌𝑖|𝑋𝑖 = 1) − 𝐸(𝑌𝑖|𝑋𝑖 = 0)
Problem: only one of the two possible outcomes is observed the other is counterfactual

Regression based analysis of treatment effects

a) Difference estimator

𝑌𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝑢𝑖

The OLS estimator is equivalent to
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𝛽1 = 1
𝑛1

∑
𝑖∶𝑋𝑖=1

𝑌𝑖 −
1
𝑛0

∑
𝑖∶𝑋𝑖=0

𝑌𝑖

with 𝑛1 = ∑𝑋𝑖 (number of treated units) and 𝑛0 = 𝑛???𝑛1

The estimator is unbiased for random assignment: 𝐸(𝑢𝑖|𝑋𝑖 = 1) = 𝐸(𝑢𝑖) = 0
Regression with pre-treatment characteristics 𝑊𝑖

𝑦𝑖 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑊1𝑖 +⋯+ 𝛽𝑟+1𝑊𝑟𝑖 + 𝑢𝑖
= 𝛽0 + 𝛽1𝑋𝑖 + 𝛽′

2w𝑖 + 𝑢𝑖 where w𝑖 = (𝑊1𝑖,… ,𝑊𝑟𝑖)′

𝐸(𝑢𝑖|𝑋𝑖 = 1,𝑤𝑖) = 𝐸(𝑢𝑖|𝑤𝑖) = 0

15.2 Difference-in-Difference (DiD) estimation

“Before and After” comparisons

Example: happiness before and after marriage

estimation by entity-demeaning is equivalent to:

𝑌𝑖𝑡 = 𝛽0 + 𝛽1(𝑡 ⋅ 𝑋𝑖)⏟⏟⏟⏟⏟
treatment effect

+𝛽2𝑋𝑖 + 𝛽3𝑡 + 𝑢𝑖𝑡

where 𝑋𝑖 is the treatment dummy and 𝑡 ∈ {0, 1} is the period dummy

How does the Fatality Rate (FR) change after a change in the beer tax?

𝐹𝑅1988 − 𝐹𝑅1982 = −0.072−1.04(𝑡𝑎𝑥1988???𝑡𝑎𝑥1982)
where the relevant 𝑡-statistic is −1.04/0.36 = 2.888 (significant)
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16 Panel Data Models

Two data dimensions:

𝑖 = 1, 2,… ,𝑁 (cross-section units)
𝑡 = 1, 2,… , 𝑇 (time periods)

Observations from the same units

Usually: 𝑁 >> 𝑇
Observed (controlled) heterogeneity:

𝑦𝑖𝑡 = 𝑥′
𝑖𝑡𝛽 + 𝑧′𝑖𝛾⏟

𝛼𝑖

+ 𝑢𝑖𝑡

⇒ individual characteristics are assumed to be constant in time

dealing with 𝛼𝑖 by

• dummy variables

• substracting the means
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16.1 Fixed effect model

𝛼𝑖 is “deterministic”: Dummy variable model

𝑦𝑖𝑡 = 𝑥′
𝑖𝑡𝛽 + 𝛼𝑖+𝑢𝑖𝑡 (16.1)

= 𝑥′
𝑖𝑡𝛽 + 𝛾2𝐷2𝑖+𝛾3𝐷3𝑖+⋯+ 𝛾𝑛𝐷𝑛𝑖+𝑢𝑖𝑡 (16.2)

𝑢𝑖𝑡
iid∼ 𝒩(0, 𝜎2)

subtracting individual specific means (“entity-demeaned”) yields:

𝑦𝑖𝑡− ̄𝑦𝑖= (𝑥𝑖𝑡− ̄𝑥𝑖)′𝛽 + 𝑢𝑖𝑡 − �̄�𝑖

with ̄𝑦𝑖 = 𝑇−1 ∑𝑇
𝑡=1 𝑦𝑖𝑡

⇒ individual effects cancel out

both approaches yield the same results

individual and time effects (two-way effects):

𝑦𝑖𝑡 = 𝑥′
𝑖𝑡𝛽 + 𝛼𝑖 + 𝜆𝑡 + 𝑢𝑖𝑡

⇒ including also time dummies

16.2 Random effects model

If 𝛼𝑖
iid∼ 𝒩(0, 𝜎2

𝛼) then the GLS estimator is obtained from

𝑦𝑖𝑡−𝜃 ̄𝑦𝑖 = (𝑥𝑖𝑡−𝜃 ̄𝑥𝑖)′𝛽 + 𝑢𝑖𝑡 − 𝜃�̄�𝑖

where 𝜃 = 1 −√ 𝜎2𝑢
𝑇𝜎2𝛼 + 𝜎2𝑢

Estimation of 𝜎2
𝛼 is based on the fact that

224



var(�̄�𝑖) = var( 1
𝑇

𝑇
∑
𝑡=1

𝑢𝑖𝑡) = 𝜎2
𝛼 + 1

𝑇 𝜎2
𝑢

such that

�̂�2
𝛼 = 1

𝑁
𝑁
∑
𝑖=1

�̄�𝑖

⏞⏞⏞⏞⏞( ̄𝑦𝑖 − ̄𝑥′
𝑖 ̂𝛽)2 − 1

𝑇 �̂�2
𝑢 (16.3)

�̂�2
𝑢 = 1

𝑁(𝑇 − 1)−𝑘
𝑁
∑
𝑖=1

𝑇
∑
𝑡=1

�̂�2
𝑖𝑡 (16.4)

�̂�𝑖𝑡 = 𝑦𝑖𝑡 − ̄𝑦𝑖 − (𝑥𝑖𝑡 − ̄𝑥𝑖)′ ̂𝛽 (16.5)

Goodness of fit

Some software packages compute the dummy-variable 𝑅2, i.e., the regression 𝑅2 that includes
the dummies as ‘explanatory’ variables

The dummy variables do not ‘explain’ anything but just represent heterogeneity ⇒ 𝑅2 is too
large

Good practice to present the “within-𝑅2”, that is, the𝑅2 of the demeaned (within) regression

Interpretation of the panel data model. Assume that 𝛼𝑖 is correlated with ̄𝑥𝑖 such that 𝛼𝑖 =
𝜆 ̄𝑥𝑖 + 𝜇𝑖 yielding

𝑦𝑖 = (𝑥𝑖𝑡 − ̄𝑥𝑖)′⏟⏟⏟⏟⏟
”short-run”

𝛽 + ̄𝑥′
𝑖⏟

”long-run”

𝛾 + 𝜇𝑖 + 𝑢𝑖𝑡

where 𝛾 = 𝛽 + 𝜆
Estimating this model yields ̂𝛽𝐹𝐸 as an estimator for the “short-run” coefficients. The random
effects model implies 𝜆 = 0 and therefore 𝛽 = 𝛾.
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16.3 Model specification

a) Tests for individual specific effects: Null hypothesis:

𝐻0 ∶ 𝛼1 = 𝛼2 = ⋯ = 𝛼𝑁 = 𝜇

F-statistic:

𝐹 = (𝑆0 − 𝑆1)/(𝑁 − 1)
𝑆1/(𝑁𝑇 −𝑁 −𝐾) ∼ 𝐹(𝑁 − 1,𝑁𝑇 −𝑁 −𝐾)

where: 𝑆0 and 𝑆1 are RSS of the pooled OLS and FE estimation

b) Hausman test: Deciding between random and fixed effects:

𝐻0: random effects or 𝐸(𝑥𝑖𝑡𝛼𝑖) = 0
Under the null hypothesis ̂𝛽𝐹𝐸 and ̃𝛽𝑅𝐸 are “similar” or 𝐸( ̂𝛽FE − ̃𝛽RE) = 0
Hausman-Wu Test: test of 𝛿 = 0 in

̃𝑦𝑖𝑡 = ̃𝑥′
𝑖𝑡𝛽 + (𝑥𝑖𝑡 − ̄𝑥𝑖)′𝛿 + 𝜖𝑖𝑡

with ̃𝑦𝑖𝑡 and ̃𝑥𝑖𝑡 as GLS-transformed variables.
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17 Econometric Analysis of Time Series

17.1 ARIMA models

Let 𝑦𝑡 = 𝑌𝑡 − 𝜇 with 𝜇 = 𝐸(𝑌𝑡) a demeaned time series for 𝑡 = 1,… , 𝑇
Autoregressive model of order p:

AR(𝑝) 𝑦𝑡 = 𝜃1𝑦𝑡−1 +⋯+ 𝜃𝑝𝑦𝑡−𝑝 + 𝜀𝑡
𝜃(𝐿)𝑦𝑡 = 𝜀𝑡

where 𝜃(𝐿) = 1 − 𝜃1𝐿 −⋯− 𝜃𝑝𝐿𝑝

Moving-Average model of order q:

MA(𝑞) 𝑦𝑡 = 𝜀𝑡+𝛼1𝜀𝑡−1 +⋯+ 𝛼𝑞𝜀𝑡−𝑞
𝑦𝑡 = 𝛼(𝐿)𝜀𝑡

where 𝛼(𝐿) = 1 + 𝛼1𝐿 +⋯+ 𝛼𝑞𝐿𝑞

ARMA (𝑝, 𝑞) model:

𝜃(𝐿)𝑦𝑡 = 𝛼(𝐿)𝜀𝑡

Autoregressive representation of a ARMA(𝑝, 𝑞):

𝜃(𝐿)
𝛼(𝐿)𝑦𝑡 =

̃𝜃(𝐿)𝑦𝑡 = 𝜀𝑡
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̃𝜃(𝐿) can be determined by comparing coefficients from

𝛼(𝐿) ̃𝜃(𝐿) = 𝜃(𝐿)

Any ARMA(𝑝, 𝑞) model can be approximated by a AR(𝑝) model choosing ̃𝑝 large enough

A time series is stationary if 𝜃(𝐿) is invertible, i.e., if it can be factorized as

𝜃(𝐿) = (1 − 𝜙1𝐿)(1 − 𝜙2𝐿)⋯ (1 − 𝜙𝑝𝐿)

such that it holds that |𝜙𝑖| < 1 for all 1 = 𝑖,… , 𝑝.
Alternatively, 𝜃(𝐿) is invertible if the 𝑝 roots 𝑧1,… , 𝑧𝑝 of the characteristic equation

𝜃(𝑧) = 0

are all outside the unit circle of the complex plane. For real root we have 𝑧𝑖 = 1/𝜙𝑖.

17.2 Unit roots

An important special case results if 𝜙1 = 1, that is,

𝜃(𝐿)𝑦𝑡 = (1 − 𝐿)(1 − 𝜙2𝐿) ⋅ (1 − 𝜙𝑝𝐿) = 𝜃∗(𝐿)Δ𝑦𝑡 = 𝜀𝑡

where all other roots are outside the unit circle, i.e., Δ𝑦𝑡 is stationary.
if 𝑝 = 1, then 𝑦𝑡 is white noise (serially uncorrelated) and 𝑦𝑡 is a random walk with

𝑦𝑡 = 𝑦𝑡−1 + 𝜀𝑡 = 𝜀𝑡 + 𝜀𝑡−1 +⋯+ 𝜀1 + 𝑦0
such that var(𝑦𝑡) = var(𝑦0) + 𝑡𝜎2

a time series is (weakly) stationary if

𝐸(𝑦𝑡) = 0 and 𝑣𝑎𝑟(𝑦𝑡) = 𝜎2
𝑦 for all 𝑡

⇒ a random walk with 𝜃(𝐿) = 1 − 𝐿 is nonstationary
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Unit root test

𝜙1 = 1 implies 𝜃(1) = 0 (one root is on the unit circle)

𝑦𝑡 = 𝜃𝑦𝑡−1 + 𝜀𝑡
⇔ Δ𝑦𝑡 = (𝜃 − 1)⏟

𝜋
𝑦𝑡−1 + 𝜀𝑡

can be tested by using the t-statistic for 𝜋 = 0 (Dickey-Fuller statistic):

DF-t =
̂𝜃 − 1

se( ̂𝜃)
= ̂𝜋

se( ̂𝜋)

Problem: t-statistic is NOT t-distributed

Extension to unknown mean and trend:

Δ𝑌𝑡 = 𝛿+𝜋𝑦𝑡−1 + 𝜀𝑡
or Δ𝑌𝑡 = 𝛿 + 𝛾𝑡+𝜋𝑦𝑡−1 + 𝜀𝑡

Different critical values for models (i) no constant (ii) with a constant and (iii) with a time
trend.

Include a trend if the series seem to evolve around a (linear) time trend

Extension to AR(p) models:

𝑦𝑡 = 𝛿 [+𝛾𝑡]+ 𝜃1𝑦𝑡−1 + 𝜃2𝑦𝑡−2 +⋯+ 𝜃𝑝𝑦𝑡−𝑝 + 𝜀𝑡
⇔ Δ𝑦𝑡 = 𝛿 [+𝛾𝑡]+𝜋𝑦𝑡−1 + 𝑐1Δ𝑦𝑡−1 +⋯+ 𝑐𝑝−1Δ𝑦𝑡−𝑝 + 𝜀𝑡

critical values do NOT depend on the lag-order p

A series is called “integrated of order d” or 𝑦𝑡 ∼ 𝐼(𝑑) if Δ𝑑𝑦𝑡 is stationary but Δ𝑑−1 is nonsta-
tionary

⇒ DF tests are used to determine 𝑑 empirically
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17.3 Cointegration

Assume:

𝑌𝑡 ∼ 𝐼(1) and 𝑋𝑡 ∼ 𝐼(1)

⇒ In general 𝑌𝑡 − 𝛽𝑋𝑡 is also 𝐼(1)
Spurious regression: If 𝑦𝑡 and 𝑥𝑡 are independent random walks:

• 𝑡-values are often significant
• large 𝑅2

• Low Durbin-Watson statistic

Common trend model (“cointegration”)

𝑋𝑡 = 𝑟𝑡 + 𝑢1𝑡 ∼ 𝐼(1)
𝑌𝑡 = 𝛽𝑟𝑡 + 𝑢2𝑡 ∼ 𝐼(1)
𝑌𝑡 − 𝛽𝑋𝑡 = 𝑢2𝑡 − 𝛽𝑢1𝑡 = 𝑢𝑡 ∼ 𝐼(0)

where 𝑟𝑡 ∼ 𝐼(1) (stochastic trend) and 𝑢𝑡 is stationary

Estimation and testing

Properties of OLS in cointegrating regressions:

• ̂𝛽 − 𝛽 is 𝑂𝑝(𝑇−1) (“super-consistent”)
• robust against endogenous 𝑋𝑡

• Efficient only if (i) 𝑋𝑖 is exogenous (ii) 𝑢𝑡 is serially uncorrelated

• 𝑡 statistics are generally invalid

Test for cointegration:

1. Step: ADF test of 𝑌𝑡 and 𝑋𝑡

2. Step: ADF test of the residuals 𝑒𝑡 = 𝑌𝑡 −𝑋𝑡 ̂𝛽
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Critical values depend also on 𝐾

Engle-Granger two-step approach
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Error correction representation:

𝑌𝑡 = 𝛿 + 𝛼𝑌𝑡−1 + 𝛽1𝑋𝑡−1 + 𝛽2𝑋𝑡−2 + 𝑢𝑡

can be rewritten as

Δ𝑌𝑡 = 𝛿 + 𝜙1Δ𝑋𝑡−1 + 𝛾(𝑌𝑡−1 − 𝛽𝑋𝑡−1)+𝑢𝑡

where 𝜙1 = −𝛽2, 𝛾 = 𝛼 − 1 < 0, and 𝛽 = (𝛽1 + 𝛽2)/(1 − 𝛼)

(𝑌𝑡−1 − 𝛽𝑋𝑡−1) ∼ 𝐼(0) is called the error correction term

replace 𝛽 by ̂𝛽 (Engle/Granger 2-step estimator)

Coefficients attached to stationary variables have the usual asymptotic distributions
(𝑡-statistics yield valid tests)
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